
Illustrated
JavaScript

coding course

Learn JavaScript building graphical projects

• What is coding?
• What is JavaScript?
• What is codeguppy.com?
• Creating user accounts

Chapter I
Welcome to the wonderful world of coding

Program

1. FETCH

2. JUMP

3. SIT

…

I’m not a dog

What is coding?

• Coding also known as computer programming
is the art of giving instructions to your
computer (or any other digital device such as
your phone, tablet or perhaps your … robot).

• Your computer is like an obedient dog. If you
give it a series of instructions, it will follow
them precisely.

• You can even place multiple instructions in a
list (aka program) and ask it to execute them
all at once.

• If you want your computer to follow your
instructions, you need to write them in a
language it understands

• There are literally hundreds of languages
(called programming languages) that can be
used to send instructions to computers

• Each language has its own commands and rules
(called syntax) that need to be understood in
order to write correct programs

Programming languages

Your computer doesn’t fetch
the ball but can draw a circle

on the screen…

Block-based languages Text-based languages

• Usually used by young kids
• Uses visual interface with drag and drop “commands”
• Good option for small programs
• Some people don’t consider “block-based coding” as

real programming

• Used by people of all ages
• Require memorization of a small set of “commands”
• Great for building programs of all sizes
• Text-based coding is the “real-coding” that even

professionals are using in their day-to-day coding activities

Different kinds of programming languages

• There are hundreds of programming languages available that
can be used for all sort of tasks: to build websites, to build
games, to build home automations and control robots... and
even heat your pizza in the microwave.

• In this course we will learn one of the best languages possible…

• We will learn JavaScript!

Python
JavaScript

Go

C++
Julia

Pascal
Ada

Fortran
C#

Java

BASIC

Why learn JavaScript?

• JavaScript is by far the most used programming language in
the world - used both by beginners but also by professional
software coders.

• People use JavaScript to build websites, create games and
nice animations and even program robots. In this course
you’ll learn how to use JavaScript to draw with code, create
animations, build games and other fun projects.

• Coding in a text-based language such as JavaScript has also
other benefits beyond the world of programming. It
enhances problem-solving skills but also attention to details.

codeguppy.comAbout codeguppy.com

• codeguppy.com is a free coding platform
for JavaScript

• you’ll write all your JavaScript programs
directly in a web browser

• you can use any Mac / Windows or Linux PC
(some tablets may work as well if you add
them a physical keyboard and mouse)

• platform comes with built-in assets
(backgrounds, sprites, etc.) that you can use
to build games and other fun projects

• there are tons of projects on the platform
that you can remix

• Let’s start…

codeguppy.comLet’s open an account with codeguppy.com

• codeguppy.com gives you unlimited space in the cloud to write and
store tons of programs

• But first you need to open an account with codeguppy.com

• You need to provide a valid email address and a password (website
doesn’t ask any other personal details)

Note: After registration, you should get an email from codeguppy.com.
Please verify your email by clicking the link in the email.

JOIN FOR FREE

Email:

Password:

REGISTER NOW

Register with email

1

2

3

Main Page

After you completed the registration, and verification of your email address, you should see a banner on your home
page with three buttons.

• TUTORIALS will show you the built-in projects and tutorials available on the website. You’ll surely learn a lot
inspecting these!

• MY PROGRAMS will show you the list of the programs you created. At the beginning this list will be empty but will
grow in time.

• CODE NOW is the button that will use to launch an empty code editor in order to create a new program

Code Editor

This is the code editor. We will
use it a lot in our coding
explorations.

For now, remember that if you
open it by mistake, you can
always close it and return to the
home page by using the home
button:

Feel free to
explore the
editor…

Exploring the code editor

Build a program using drag and drop

Our first type-in program

Homework

Chapter II
Let’s write some code

Launching the code editor

CODE NOWMY PROGRAMSTUTORIALS

Code Editor

Here you’ll
type your
programs

Action Bar

Browse sprite
library, colors,

commands,
etc.

Run / Stop Button

Run or Stop your program.

Output Canvas

Here you’ll see the
output of your
program.

If you have a high screen resolution, your screen will be split in half:
on the left you’ll see the code editor and on the right the output area

Programming is like
writing a book...

… except if you miss out a
single comma on page 349
the whole thing you wrote

makes no sense.

- Anonymous

Our first program…

The buttons on the action bar show and
hide various pallets with instructions,
commands or assets.

For now, let’s drag and drop a sprite in an
empty area of the code editor…

Let’s play with built-in assets

Drag and drop a sprite

(Sprites palette) (Code area) (Output area)

sprite('adventure_girl.idle', 400, 300, 0.5);

The platform will write a small “line of code” after you drop a sprite in the code area, like this:

Each sprite outputs a different line of code…

sprite('adventure_girl.idle', 400, 300, 0.5); sprite('knight.idle', 400, 300, 0.5);

You don’t have to write the above code. Just drag and drop a sprite from the palette in the code editor to have this code generated for you.

sprite('plane.fly', 400, 300, 0.5);

Let’s test our code…

• Press “Run” to execute the program • If you don’t have any error in your
program, you should see in the output
area the sprite you dropped in the code!

If your program doesn’t display anything, delete the code in the editor and try drag and dropping another sprite. Then press “Run” again.

sprite('plane.fly', 400, 300, 0.5);

Stopping the program

• After execution, the program will run until you stop it.

• If you want to modify your program, you first need to Stop it first, then modify the code (we’ll see later how to do
this) and then Run it again. It is a continuous cycle of: Edit -> Run -> Stop -> Edit -> Run -> Stop

• To stop the program, use the “Stop” button or the close output button

Built-in instruction that asks
computer to display a sprite on
the canvas.

The actual sprite is specified in
between quotes inside the
parenthesis as a “parameter”.

Parameters of the instruction.

Parameters specify what sprite to display, where to
display it on the canvas and at what coordinates.

Experiment: Try to change the 400 and 300
numbers with other numbers between 0 and 800.

Press “Play” / “Stop”
after each
modification to run /
stop the program.

sprite('adventure_girl.idle', 400, 300, 0.5);

Let’s analyze the code…

sprite('plane.fly', 400, 300, 0.5);

Congratulations!

You just created your first one-line long JavaScript program using the
drag-and-drop method!

music('Fun Background');
background('Field');
sprite('plane.fly', 400, 300, 0.5);

Let’s build now a greeting card…

Step 1: Drag and drop a music
file

Step 2: Drag and drop a
background image or color

Step 3: Drag and drop a sprite

Press “Play” when ready.

Example 1 Example 2

• With only 3 lines of code, you can create quite interesting greeting cards

• Feel free to explore different combinations of backgrounds, sprites and music

• Do you know how to adjust the sprite position to better fit in your composition?

Naming and saving the program

Click on the Pencil button or inside the
label to edit the name of your program

Then click on the Save
button to save your code

Sharing programs…

• When a program is saved, a new “Share”
button appears on the toolbar.

• Use the link to share the program with family
and friends (via email)

• You may also submit homework and
assignments in the same way using the
classroom system

Our first type-in program…

• In codeguppy.com, programs can write and draw on a graphical canvas
of 800x600 pixels

• Origin is in the top-left corner

• Middle of the canvas is at about (400, 300)

• x coordinate goes from 0 to 800 (left to right)

• y coordinate goes from 0 to 600 (top to bottom)
(400, 300)

Let’s understand the canvas

Pixels and Coordinates
• Canvas is made from many tiny square dots called pixels

(480,000 pixels: 800 on horizontal x 600 on vertical)

• Coordinates are a pair of (x, y) numbers which are used to
determine the position of a pixel on the canvas.

Our first type-in program

circle(400, 300, 300);

• Type carefully this line in the
code editor.

• Make sure you use the same
casing as illustrated and
include all the punctuation
signs.

• When ready, press the Play /
Run button

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

0

(400, 300)

circle(400, 300, 300);

This is the
output:

A big circle!

Built-in instruction that asks
computer to draw a circle on the
canvas.

codeguppy.com has many built-
in instructions for different
purposes (remember the sprite
instruction used before).

Parameters of the instruction.

There are 3 parameters inside
parenthesis and separated by comma:

- 400, 300 - coordinates of circle
center

- 300 – radius of the circle

Try to modify the
parameters of this
instruction and
notice the effect.

Don’t forget to press
“Play” / “Stop” after
each modification.

circle () ;400 300, , 300

Write readable code

• Whitespaces don’t matter in
JavaScript. Use “spaces” inside your
program to make it look nice. For
instance, you can place a “space”
after each parameter.

• You can also write “comments”
inside your code. If you start a line
with “//” you can write whatever
you want on that line – the
computer will ignore it.

• Even if the computer ignores a
comment line, comments are great
for people to remember what a
particular program or line of code is
doing.

circle(400, 263, 50);
circle(350, 350, 50);
circle(450, 350, 50);

How many circles can you draw?

• Go ahead and play with the circle instruction. Draw circles in various positions on the screen
• Add multiple lines to your program
• For instance, this small program draws three circles

codeguppy.com/code.html
Let’s draw a
bear using
circles…

// Draw bear face
circle(400, 300, 200);

// Draw left ear
circle(250, 100, 50);
circle(270, 122, 20);

// Draw right ear
circle(550, 100, 50);
circle(530, 122, 20);

// Draw left eye
circle(300, 220, 30);
circle(315, 230, 10);

// Draw right eye
circle(500, 220, 30);
circle(485, 230, 10);

// Draw nose
circle(400, 400, 90);
circle(400, 350, 20);

Type carefully the program that you see in the listing

Here are a few tips to ensure programs are type-in correctly:

▪ Please type very carefully exactly as it appears on the slide. Do
not skip any letter, number or punctuation sign!

▪ Programs are case sensitive. Type-in all the commands using the
same case as you see on the slide.

▪ To avoid accumulating errors, you can run the program from time
to time, but only after the current line of code is completed.

▪ If computer will output errors, please check carefully the typed-
in program against the program on the slide. Ask for assistance if
you need help.

codeguppy.com/code.html// Draw bear face
circle(400, 300, 200);

// Draw left ear
circle(250, 100, 50);
circle(270, 122, 20);

// Draw right ear
circle(550, 100, 50);
circle(530, 122, 20);

// Draw left eye
circle(300, 220, 30);
circle(315, 230, 10);

// Draw right eye
circle(500, 220, 30);
circle(485, 230, 10);

// Draw nose
circle(400, 400, 90);
circle(400, 350, 20);

Homework

Write a program that
makes a drawing using
only circles.

• Remembering about canvas and circle instruction

• Learn how to draw other shapes
(ellipse, rectangle, line, triangle, arc, point and text)

• A simple drawing with code program

• Homework

Chapter III
Drawing shapes

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

0

• In codeguppy.com, programs
can write and draw on a
graphical canvas of 800x600
pixels

• Origin is in the top-left corner

• Middle of the canvas is at
about (400, 300)

• x coordinate goes from 0 to
800 (left to right)

• y coordinate goes from 0 to
600 (top to bottom)

circle (x, y, r); Parameters of the instruction.

There are 3 parameters inside parenthesis and
separated by comma:

- 400, 300 - coordinates of circle center
- 300 – radius of the circle

circle(400, 300, 300);

(400, 300)

800

6
0

0

Let’s remember the
“circle” instruction…

Other graphical instructions

circle

ellipse

rect

line

(400, 300)

300

200

(400, 300)

200

(400, 300)

300

200

(400, 300)

(500, 500)

(200, 400) (600, 500)

(400, 100)

(400, 300)

(400, 300)

JavaScript
(400, 300)

triangle

arc

point

text

To learn the syntax of these instructions we will
test them one by one in a new program.

ellipse(400, 300, 800, 600);

Let’s draw an ellipse

To draw an ellipse (aka an elongated circle), you use the
instruction “ellipse” with 4 parameters:

- First 2 parameters: coordinates of the ellipse
- Third parameter: width of the ellipse
- Fourth parameter: height of the ellipse

This ellipse is big as the entire canvas!
This is because:

ellipse width = 800 (same as canvas width)
ellipse height = 600 (same as canvas height)

rect(100, 100, 600, 400);

Let’s draw a rectangle

To draw rectangle, you use the instruction “rect”:

- First 2 parameters: top-left corner coordinates
- Third parameter: width of the rectangle
- Fourth parameter: height of the rectangle

The rectangle from this example is nicely
centered on the canvas.

Can you tell why?

x, y
top-left
corner

width height

line(0, 0, 800, 600);
line(0, 600, 800, 0);

Let’s draw some lines

To draw rectangle, you use the instruction “line” and specify
the coordinates x1, y1 and x2, y2 of the line points.

The program of the left draws two diagonal
lines. Watch carefully and see that two
opposite corners of the canvas are used as
arguments in each instruction.

x1, y1
coordinates
of line start

x2, y2
coordinates
of line end

triangle(400, 100, 100, 500, 700, 500);

Let’s draw a triangle

Triangle is an instruction that takes lots of parameters!

But they are very simple: they are the x, y coordinates of the
3 corners of the triangle. In total 6 numbers!

100, 500

x1, y1
First corner

x2, y2
Second corner

x3, y3
Third corner

700, 500

400, 100

arc(400, 300, 800, 600, 0, 180);

Let’s draw an arc

To draw an arc, you need to imagine an ellipse!

The first 4 parameters of “arc” instructions are defining the
virtual ellipse. The ellipse is just imaginary.
Then the last two parameters are specifying what segment of
the ellipse to be displayed. Here the numbers are from 0 to
360 -- and are trigonometric degrees!

If you run the program, you’ll see an arc
that looks like the bottom half of the ellipse
(see numbers 0, 180)

0

360

90

180

270

x, y
Ellipse Center

width height Segment of the
ellipse that we

display

point(400, 300);

Let’s draw a single point!

Sometimes, you need to draw a single tiny point.
You can do this using the “point” instruction.

It only takes two parameters: the coordinates of the point.

Watch carefully in the middle of the canvas!

You should see the point, although is very
tiny!

x, y
coordinates

text('JavaScript is cool', 400, 300);

How about adding some text?

To display the text, you need to specify the text, in between quotes
(you can use single or double quotes) as well as the coordinates
where you want to display the text.

Note: Don’t put any other quotes or other funny symbols inside the
text! Always close the text with the same quote you started.

The text is displayed at specified coordinates!

x, y
coordinates

The text that we
want to display in
between quotes

JavaScript is cool
(400, 300)

text("JavaScript", 400, 300);

text('JavaScript', 400, 300);

Use double quotes

Use single quotes

It is necessary to enclose the
text you want to display in
between quotes.

Use either single or double
quote, but don’t mix them in
the same message.

OR

Did you notice the pattern of these JavaScript instructions?

instruction () ;

instruction () ;“Hello” 200,

If instruction has no parameters
You type the name of instruction followed by ();

If instruction has parameters
You put parameters inside () separated by ,

circle

ellipse

text

line
rect

point

triangle
arc

Graphical instructions reference

circle(400, 300, 200);

ellipse(400, 300, 300, 200);

rect(400, 300, 300, 200);

line(400, 300, 500, 500);

triangle(400, 100, 200, 400, 600, 500);

arc(400, 300, 300, 200, 0, 180);

point(400, 300);

text('JavaScript', 400, 300); JavaScript

(400, 300)

200

(400, 300)

300

200

(400, 300)

300

200

(400, 300)

(500, 500)

(200, 400) (600, 500)

(400, 100)

(400, 300)

(400, 300)

(400, 300)

What if I forget the syntax of these instructions?

If you can forget the syntax of these graphical
instructions, just open the “Code Snippets”
palette and go to the “Drawing” tab.

You’ll be able to drag&drop in your code, small
snippers of code as needed.

Note: This palette contains also other
commands that we’ll learn about in the future.

Let’s draw with code by combining all these new
instructions in a bigger program…

// Street
line(0, 500, 800, 500);

// Sun
circle(750, 50, 150);
line(480, 60, 561, 47);
line(548, 224, 602, 172);
line(740, 304, 747, 236);

// Car
rect(175, 340, 223, 54);
rect(108, 394, 362, 74);
circle(168, 468, 32);
circle(408, 468, 32);

Drawing with code

(a type-in program)

https://codeguppy.com/code.html?js/20

// Street
line(0, 500, 800, 500);

// Sun
circle(750, 50, 150);
line(480, 60, 561, 47);
line(548, 224, 602, 172);
line(740, 304, 747, 236);

// Car
rect(175, 340, 223, 54);
rect(108, 394, 362, 74);
circle(168, 468, 32);
circle(408, 468, 32);

If you typed in the program correctly you should see a car a nice drawing with a car and a sun!
For now, the drawing is black and white. Later in this course, we will learn on how to add color to shapes.

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

0

Homework

On a blank piece of paper draw simulate
our 800x600 pixels canvas by drawing an
8 x 6 inches rectangle.

Draw thin dividing lines every 1 inch …

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

0

Homework

Using only basic shapes, draw
a scene (e.g. a house, a flower,
a robot, etc.)

Then write a JavaScript
program that draws with code
your scene!

• About colors
• Drawing colored shapes
• Setting line thickness
• Text attributes
• Drawing complex scenes with code
• Homework

Chapter IV
Shape attributes

What have we learned about?

circle(400, 300, 200);

ellipse(400, 300, 300, 200);

rect(400, 300, 300, 200);

line(400, 300, 500, 500);

triangle(400, 100, 200, 400, 600, 500);

arc(400, 300, 300, 200, 0, 180);

point(400, 300);

text('JavaScript', 400, 300);

• Until now we learned about eight shape drawing instructions and how to use them to draw black and white shapes on
our 800x600 pixels canvas.

… let’s see now how to add some color to our drawings!

• Set background / canvas color

• Set shape outline color

• Set shape fill color

Let’s see how to add some color…

First, let’s set the background color…

• In the code editor, open the Background Palette
• Go to the “Colors” tab
• Select a nice color and drag it into the code area
• Notice the code it creates there…

• Now Run the program

• You should see the canvas changing color
in accordance with the selected color

• Press “Stop” to stop the program and
clear the canvas…

(Backgrounds ->
Color palette) (Code area) (Output area)

background('LightYellow');

Colors

What is background() doing?
• background() is a special instruction that sets the color of the canvas

• background() takes as parameter a color in between single or double quotes: background("lightyellow");

• By default, if no background() instruction is used, the canvas will appear white

• Note: You probably noticed on the backgrounds palette that you can also use an image as a background. Feel free
to explore this feature on your own. For now, we are interested only in setting the background to a solid color.

background('LightYellow');

background('Field’);

...

Multiple drawing layers

The codeguppy.com system has a multi-layered drawing architecture. For instance, the background
command is impacting the bottom layer, while all the other shape drawing commands are operating
on the top drawing layer.

In this way if you change the background after you have something drawn, the command won’t
interfere with your drawing.

Sprites are also operating in a different layer… but we’ll learn more about sprites in a future lesson.

Now, let’s set the outline color (aka the stroke)…

• This program has 3 lines
• Please type it carefully as you see on the screen

• When ready, press “Run” to execute the program

• You should see 2 concentrical circles,
both drawn in red.

• Why both circles are red?

stroke("red");

circle(400, 300, 200);
circle(400, 300, 180);

What is stroke() doing?
• stroke() is a special instruction that sets the color of the shape outline (aka stroke).

• stroke() takes as parameter a color in between quotes: stroke("red");

• Once a color is selected, it is persisted and used to draw all shapes on the screen, until a new color is selected with
other stroke() instruction

• By default, if no stroke() instruction is used, the program draw black shapes (as saw in previous lesson)

stroke("red");
circle(400, 300, 200);
circle(400, 300, 180);

stroke("blue");
rect(50, 50, 700, 500);  Type-in this program to see the effect…

Important: Numbers and strings

circle(400, 300, 200); stroke("Red");

Until now we mostly worked with instructions that took numbers as parameters (e.g.
circle).

As you saw until now, in this lesson we will encounter a series of instructions that takes
text (aka strings) as arguments.

Strings are small text snippets enclosed by single or double quotes. When you see
them in a program, please type them as is and don’t forget the quotes.

Next, let’s set the fill color…

• This is a longer program, but the effect is worth the
typing. Press “Run” when ready…

• This is a nice drawing!

// Stem
fill("lime");
rect(277, 313, 30, 237);
ellipse(215, 514, 124, 46);
ellipse(374, 438, 134, 46);

// Flower
fill("red");
circle(290, 160, 87);
circle(209, 314, 87);
circle(377, 307, 87);
fill("yellow");
circle(290, 260, 46);

https://codeguppy.com/code.html?js/40

What is fill() doing?
• fill() is an instruction like stroke(), but instead of setting the color for the outline, it sets the color for the interior

• fill() has the same syntax as stroke() taking as parameter a color in between quotes: fill("red");

• Once a color is selected, it is persisted and used to fill the interior of all new shapes, until a new color is selected
with other fill() instruction

• By default, if no fill() instruction is used, the program draws empty shapes (with transparent interior)

You may ask: what other colors can we specify as parameter
to background(), stroke() and fill() instructions?

I’m glad you asked…

There are plenty of colors and shades you can choose…

IndianRed, LightCoral, Salmon, DarkSalmon, LightSalmon, Crimson, Red, FireBrick, DarkRed

Pink, LightPink, HotPink, DeepPink, MediumVioletRed, PaleVioletRed

LightSalmon, Coral, Tomato, OrangeRed, DarkOrange, Orange

Gold, Yellow, LightYellow, LemonChiffon, LightGoldenrodYellow, PapayaWhip, Moccasin, PeachPuff, PaleGoldenrod, Khaki, DarkKhaki

Lavender, Thistle, Plum, Violet, Orchid, Fuchsia, Magenta, MediumOrchid, MediumPurple, RebeccaPurple, BlueViolet, DarkViolet, DarkOrc
hid, DarkMagenta, Purple, Indigo, SlateBlue, DarkSlateBlue, MediumSlateBlue

GreenYellow, Chartreuse, LawnGreen, Lime, LimeGreen, PaleGreen, LightGreen, MediumSpringGreen, SpringGreen, MediumSeaGreen, Se
aGreen, ForestGreen, Green, DarkGreen, YellowGreen, OliveDrab, Olive, DarkOliveGreen, MediumAquamarine, DarkSeaGreen, LightSeaGr
een, DarkCyan, Teal

Aqua, Cyan, LightCyan, PaleTurquoise, Aquamarine, Turquoise, MediumTurquoise, DarkTurquoise, CadetBlue, SteelBlue, LightSteelBlue, Po
wderBlue, LightBlue, SkyBlue, LightSkyBlue, DeepSkyBlue, DodgerBlue, CornflowerBlue, MediumSlateBlue, RoyalBlue, Blue, MediumBlue,
DarkBlue, Navy MidnightBlue

Cornsilk, BlanchedAlmond, Bisque, NavajoWhite, Wheat, BurlyWood, Tan, RosyBrown, SandyBrown, Goldenrod, DarkGoldenrod, Peru, Ch
ocolate, SaddleBrown, Sienna, Brown, Maroon

White, Snow, HoneyDew, MintCream, Azure, AliceBlue, GhostWhite, WhiteSmoke, SeaShell, Beige, OldLace, FloralWhite, Ivory, AntiqueW
hite, Linen, LavenderBlush, MistyRose

Gainsboro, LightGray, Silver, DarkGray, Gray, DimGray, LightSlateGray, SlateGray, DarkSlateGray, Black

Any color on this slide, can be used as parameter to stroke() and fill()

Color palette

• Of course, you don’t have to memorize
all these named colors!

• You can find the entire list on the
Backgrounds -> Colors palette

• Although they appear under
Backgrounds, these are the same colors
that you can also use for stroke() and
fill() instructions

What if the colors from codeguppy palette are not enough?

Did you ever use a drawing app
such as Microsoft Paint?

Some apps allow users to select a
wide range of colors and shades
using a tools such as this one.

In JavaScript and codeguppy.com
we can also use all these colors.
Let’s see how…

• Did you notice these fields called “Red”, “Green” and “Blue” in Microsoft Paint?
(Note: They change automatically when you use the sliders to select other shades / hues.)

• In computing, red, green and blue are primary colors… and by combining these colors in different amounts we can
obtain basically any other color or shade (or at least about 16 million other colors).

Red = 237
Green = 28
Blue = 36

You can form any color by combining
red, blue and green in different
amounts in interval 0 … 255

Colors can also be expressed as a single
text in hexadecimal format:

“#ED1C24”

// Stem
fill("lime");
rect(277, 313, 30, 237);
ellipse(215, 514, 124, 46);
ellipse(374, 438, 134, 46);

// Flower
fill("red");
circle(290, 160, 87);
circle(209, 314, 87);
circle(377, 307, 87);
fill("yellow");
circle(290, 260, 46);

// Stem
fill(146, 208, 80);
rect(277, 313, 30, 237);
ellipse(215, 514, 124, 46);
ellipse(374, 438, 134, 46);

// Flower
fill("#ED1C24");
circle(290, 160, 87);
circle(209, 314, 87);
circle(377, 307, 87);
fill("#FFFD55");
circle(290, 260, 46);

Using RGB colors in JavaScript
• Let’s start by making a clone of the Flower program that we typed in earlier. Use the “Save a copy” button

• Using Microsoft Paint try to find similar RGB colors for the three colors that appear in the program.
JavaScript and codeguppy allow defining colors in RGB format as well. You can specify them as 3 numbers
or as a small text containing the hexadecimal code.

https://codeguppy.com/code.html?js/40
https://codeguppy.com/code.html?js/40b

Filled shapes with no outline (no stroke)

You probably noticed in the flow program, that the
shapes that makes our flower have a tiny black outline.
This is because of the default stroke used by
codeguppy.

We also learned that we can change the color of the
stroke using the stroke() command.

Question: But how can we eliminate the outline
completely?

Answer: This can be done by using the noStroke();
instruction at the beginning of the program.

Go ahead, try to update your program with this
instruction and see the effect (full listing on next page).

Removing the outline…

• Filled shapes with no outline!

• noStroke(); will affect all the future outlines until a new outline
color is selected via stroke, like this: stroke(“red");

• Note: “S” is uppercase inside noStroke() instruction. Also,
noStroke is one word (with no space in between no and Stroke)

noStroke();

// Stem
fill(146, 208, 80);
rect(277, 313, 30, 237);
ellipse(215, 514, 124, 46);
ellipse(374, 438, 134, 46);

// Flower
fill("#ED1C24");
circle(290, 160, 87);
circle(209, 314, 87);
circle(377, 307, 87);
fill("#FFFD55");
circle(290, 260, 46);

Can you select a different thickness for strokes?

strokeWeight(3); strokeWeight(7); strokeWeight(10);

• You can use the strokeWeight() instruction to select a different thickness for the outline
• By default, the thickness is one, but you can use any other number like in this examples
• Modify the previous program and instead of noStroke() use strokeWeight() instruction as you see below

You can also remove the fill color!

• You can use the noFill() instruction to remove the fill color
• By default, shapes in codeguppy environment are drawn without fill.

• In the following program the second circle, which is bigger will hide completely the first one. However, since the
rectangle is drawn transparent (with no fill), will not hide the circles.

fill("red");
circle(400, 300, 180);
circle(400, 300, 200);

noFill();
rect(50, 50, 700, 500);

In multiline programs, computers always execute
instructions in order from top to bottom.

Text can be as big as you want

textSize(120);

stroke("blue");
strokeWeight(7);
fill("yellow");

text("Hello", 250, 200);
text("JavaScript", 150, 400);

• To control the text size, you can use the textSize() instruction, with a number as parameter.

• Notice that the other attribute instructions such as stroke(), strokeWeight() and
fill() are also affecting the text appearance.

circle(400, 300, 200);

ellipse(400, 300, 300, 200);

rect(400, 300, 300, 200);

line(400, 300, 500, 500);

triangle(400, 100, 200, 400, 600, 500);

arc(400, 300, 300, 200, 0, 180);

point(400, 300);

text('JavaScript', 400, 300); JavaScript

(400, 300)

200

(400, 300)

300

200

(400, 300)

300

200

(400, 300)

(500, 500)

(200, 400) (600, 500)

(400, 100)

(400, 300)

(400, 300)

(400, 300)

background("red");

stroke("red");

noStroke();

fill("red");

noFill();

strokeWeight(3);

textSize(10); HELLO

Drawing Shapes Setting shape attributes

Typing time! Let’s type-in this program…

// Background
noStroke();
fill("#00b0f0");
rect(0, 0, 800, 400);
fill("#548235");
rect(0, 400, 800, 200);

fill("#ffc740");
rect(109, 254, 325, 274);

// Left window
stroke("#c55a11");
strokeWeight(3);
fill("#dae3f3");
square(147, 302, 56);
line(175, 302, 175, 358);
line(147, 330, 203, 330);

// Right window
square(347, 302, 56);
line(375, 302, 375, 358);
line(347, 330, 403, 330);

// Door
strokeWeight(1);
fill("#ed7d31");
rect(229, 417, 90, 110);
fill("#bfbfbf");
circle(305, 471, 8);

// Horn
noStroke();
fill("#843c0c");
rect(174, 117, 24, 80);

// Roof
fill("#ed7d31");
triangle(109, 254, 272, 75, 434,
254);

// Sun
fill("yellow");
circle(750, 50, 150);
stroke("yellow");
strokeWeight(6);
line(480, 60, 561, 47);
line(548, 224, 602, 172);
line(740, 304, 747, 236);

If you typed in correctly
the program, you
should see this image!

Homework

Let’s practice the new
instructions by using them to
draw a nice scene with code!

Here are a few examples, but
feel free to create your own
drawing.

Share your drawing with the
entire class next time!

• Printing messages using println
• Expressions
• Introducing variables
• Exercise: Calculate area and circumference of circle
• Exercise: Fahrenheit to Celsius converter
• Exercise: Population of Mars
• Incrementing variables
• Variables in graphical programs
• Exercise: Tiny house in the middle of the canvas
• Exercise: Tiny car at x, y coordinates

Chapter V – Variables

Introducing println instruction

println is a simple instruction that can be used to quickly display values on the screen.
println is not using the canvas as the text instruction, but instead it displays the values in a simple text layer on top of
the canvas.

println("Math program");
println(100);
println("+");
println(200);
println("=");
println(300);

Math program
100
+
200
=
300

Feel free to explore println instruction by printing different numbers and messages on the screen.

Notice that println is printing
both numbers and texts.

If you want to print a number,
type it as is, however if you want
to print a message, please put it in
between “quotes”

Text message

Number

https://codeguppy.com/code.html?js/70a

println("Math program");
println(100);
println("+");
println(200);
println("=");
println(300);

You don’t have to do calculations yourself!
Computers are very efficient at doing math calculations.

println("Math program");
println(100);
println("+");
println(200);
println("=");
println(100 + 200);

Modify the last line in the
program and let the
computer help you with
the calculation

https://codeguppy.com/code.html?js/70a
https://codeguppy.com/code.html?js/70a2

About expressions

In the previous example we provided JavaScript the expression 100 + 200, and JavaScript performed the calculation.
You can convert virtually any arithmetic expression to a JavaScript expression and let the computer calculate it.

You can also use the following basic operators

Operator Effect

+ Addition

- Subtraction

* Multiplication

/ Division

() Parenthesis – set order of operations
(if not used, JavaScript follows typical math order of operations)

100 / 2

(100 - 32)5

9
(5 / 9) * (100 – 32)

In math class In JavaScript class

→

3 + 10 / 2

(123 * 453) / 12
4643.25

50

8

println("JavaScript calculator");

println(2 + 3);

println(3 / 2);

println(2 + 3 * 10 - 100 / 2);

println(2 * (3 + 5));

println(((5 - 3) * (5 - 3)) / 2);

println((2 + 3) * 5 - 4 * (5 / 2));

Practice expressions by doing as many calculations as needed.

You don’t have to type in this program! This is just an example. Try to input your own calculations using the basic addition,
subtraction, multiplication and division operators. Use parenthesis to indicate the desired order of operations.

Type one println line at a time, then press Run.

https://codeguppy.com/code.html?js/70a3

println("Calculation 1: ", 2 + 3 * 10 - 100 / 2);
println("Calculation 2: ", 12 + 33 * 10 - 500 / 2);

first parameter second parameter

println(____ , ____ , ____);

Number
String
Expression

Number
String
Expression

Number
String
Expression

Tip: println accepts an unlimited number of arguments. When you provide multiple parameters,
println will display all of them in a single line of text.

You can use this feature to
put a nice label in front of
your calculations.

https://codeguppy.com/code.html?js/70a4

println("Side a: ", 10);
println("Side b: ", 12);

println("Perimeter = ", (10 + 12) * 2);
println("Area = ", 10 * 12);

println("Side a: ", 89);
println("Side b: ", 93);

println("Perimeter = ", (89 + 93) * 2);
println("Area = ", 89 * 93);

Sometimes, we need to execute the same calculations but with different numbers.
Let’s say we need to calculate the perimeter and area of our bedroom and our backyard (both rectangles).

Si
d

e
a

1
0

 f
t

Side b
12 ft

Si
d

e
a

8
9

 f
t

Side b
93 ft

Bedroom Backyard

It seems a lot of work to change the numbers in our programs each time we need to calculate the perimeter and area of
a different rectangle. Is there a better way to minimize the changes?

https://codeguppy.com/code.html?js/70a5
https://codeguppy.com/code.html?js/70a6

Introducing variables

• JavaScript allows to define “variables”. A variable is a name that contains a value or expression.
• let keyword instructs the computer to define the variable with the specified name.
• Each time you use that name in your code, the computer will use the value represented by that name.

• You can use any letter or even combinations of
letters and numbers for the name of the variable
but don’t start the variable name with a number
or funny symbol

• The following are all valid variable names:
a, b, c, … , A, B, a1, b1, myName, houseSize, x, y, z

• Try to use meaningful letters or words for the
names of the variables in order to refer to them
easily at a later time. Don’t use JavaScript
reserved words.

Variable Rules

let name = value ;

a

b

c

result1

result2

x

s

let

3c

10

3

100 / 2

3 + 10 / 2

12 + 33 * 10 - 500 / 2

(9/5) * 100 + 32

“Hello”

Put meaningful names to your
variables following JavaScript rules

As a value, you can
assign a number, a
text or an expression

You can declare and assign
variables in one line of code

let a = 100;

Declare variable a and assign it with value 100

let b;
b = 100;
b = 200 + 10;

1. Declare variable b (b has no value)
2. Assign variable b with value 100
3. Reassign a new value to variable b. b is now 210.

Or you can just declare the variable
… then you can assign it later

Important: You can declare a variable with certain name just once!
But you can change its value (reassign it) as many times as you need.

Remember: You can print multiple
values in the same line using
println.

As arguments you can use
numbers, strings, expressions, and
even variables.

println(____ , ____ , ____);

Number
String
Expression
Variable

Number
String
Expression
Variable

Number
String
Expression
Variable

let a = 10;
let b = 20;

println(a);
println(b);

println("a = ", a);
println("b = ", b);

println("a = ", a, " , b = ", b);

If you want to inspect the value of a variable, you
can use the same versatile println instruction.

Program on the right shows a few ways of using
println with variables.

https://codeguppy.com/code.html?js/70

let a = 10;
let b = 12;

println("Side a: ", a);
println("Side b: ", b);
println("Perimeter = ", (a + b) * 2);
println("Area = ", a * b);

Let’s modify our room /rectangle calculation program to use
two variables a and b to represents the rectangle sides.

Side a: 10
Side b: 12
Perimeter = 44
Area = 120

let a = 10;
let b = 12;

Side a: 89
Side b: 93
Perimeter = 364
Area = 8277

let a = 89;
let b = 93;

Side a: 23
Side b: 19
Perimeter = 84
Area = 437

let a = 23;
let b = 19;

Side a: 60
Side b: 200
Perimeter = 520
Area = 12000

let a = 60;
let b = 200;

By using variables, we can quickly re-run the program to
calculate the size of different rooms / backyards / rectangles.

We only need to change the first two lines then press Run.

String variables

let s = "Hi";

Variables can also store
text values…

let s1 = "Hello";
let s2 = "World";

let s = s1 + " " + s2 + "!";

println(s);

Strings can be concatenated
using the “+” operator

Variables can store numbers as well as texts. If a variable stores a text, then we call that variable a “string variable”
Numbers and strings are two important data types that are used by JavaScript.

Concatenating strings

To mathematically add
numbers:

2 + 3

To concatenate (e.g. join)
texts together:

“Java“ + “Script”

Helpful tip: If you try to concatenate a string with a number, JavaScript will first
convert the number to string and then concatenate the two strings together.

+

In JavaScript, you can use the + symbol (aka operator) for two operations

let x1 = 100;
println(x1 + 3);

let x2 = "100";
println(x2 + 3);

100 vs “100”

When working with numbers, don’t put them in between quotes if you intend to use them in mathematical expressions.

Although 100 and “100” looks the same, JavaScript interprets them differently. The first is a number, while the second is a
string (e.g. a plain text).

103 1003

Since x1 is a number, the
computer will perform the
arithmetic and the output
is 103 (100 + 3 = 103)

Because x2 is a string, the
computer will convert number 3
to string “3” and will concatenate
the two strings outputting “1003”

let name = "John";
let myAge = 100;

let message = "My name is " + name + " and my age is " + myAge;
println(message);

let name = "Marian";
let myAge = 100;

println("My name is ", name, " and my age is ", myAge);

let name = "John";
let myAge = 100;

let message = "My name is " , name , " and my age is " , myAge;
println(message);

Until now we used println
with multiple parameters
to display different values

However, you cannot use
the , to put multiple values
together in a variable

(this program fails)

But you can use the +
operator to concatenate
together different values
(number and text) and put
the result in a variable!

Exercise: Let’s calculate area and circumference of a circle
This exercise requires a few basic notions of trigonometry.

A = π * r2

C = 2 * π * r

For a circle or radius r, we can calculate the area A
and circumference C with the following formulas

π = 3.14

let r = 10;

let area = PI * r * r;
let circ = 2 * PI * r;

println("r = ", r);
println("Area = ", area);
println("Circumference = ", circ);

We keep the radius in variable r

codeguppy has a built-in
constant named PI that has the

value of π = 3.14

Use variables area and circ for
area and circumference of circle

Display the values

https://codeguppy.com/code.html?js/70b

Exercise: Fahrenheit to Celsius converter

TF = (TC
) + 32

9

5

TC = (TF - 32)5

9

Celsius to Fahrenheit

Fahrenheit to Celsius

→ (5 / 9) * (tf – 32)

→ (9/5) * tc + 32

let tf = 100;
let tc = (5/9) * (tf - 32);
println(tf, " Fahrenheit = ", tc, " Celsius");

let tc2 = 100;
let tf2 = (9/5) * tc2 + 32;
println(tc2, " Celsius = ", tf2, " Fahrenheit");

Let’s analyze the program:

• In the first part, we used variables tc and
tf to hold the values for temperatures

• In the second part we used different
variables tc2 and tf2 because we cannot
declare the same variable twice –
JavaScript rule! (we could’ve however not
declared it second time, but only change
value)

• We used parenthesis in expressions to
dictate order of operations and to avoid
ambiguity

• We used multiple parameters with println
to give a nice format to our program
output.

https://codeguppy.com/code.html?js/70c

Exercise: Population of Mars

In the future humans may colonize Mars.

Let’s find out how many people can inhabit Mars at the same
population density as the people on Earth?

Given data:

Earth Mars

Sphere with radius of 6378.1 km
(use variable earthRadius)

Population of 7.753 billion people
(use variable earthPopulation)

Sphere with radius of 2106.9 miles
(use variable marsRadius)

marsPopulation = ?

P.S. 1 mile = 1.60934 km

Take your time and try to implement this program! You can use as many variables as needed to store intermediate calculations.
Solutions on the next slide!

let kmInAMile = 1.6;

let earthRadius = 6378.1; // in km
let earthPopulation = 7.753 * 1000000000; // people on Earth
let earthSurface = 4 * PI * earthRadius * earthRadius;
let earthDensity = earthPopulation / earthSurface;

println("*** Earth ***");
println("Radius: ", earthRadius);
println("Surface: ", earthSurface);
println("Population: ", earthPopulation);
println("Density: ", earthDensity);

let marsRadius = 2106.1 * kmInAMile; // in km
let marsSurface = 4 * PI * marsRadius * marsRadius;
let marsPopulation = marsSurface * earthDensity;

println(" -------------- ");
println("*** Mars ***");
println("Radius: ", marsRadius);
println("Surface: ", marsSurface);
println("Population: ", marsPopulation);

Program listing
(Mars Population)

Incrementing variables

Incrementing means increasing the value of a variable with a certain amount
(very common is to increase with 1)

If a = 2 and if we increment a, then a
will become 3!

If x = 100 and if we increment x by 10,
then x will become 110

let a = 2;
a = a + 1;

let x = 100;
x = x + 10;

This is easy… we can write this code

The above code is correct, but incrementation is such a common operation in programming
that in JavaScript it got its own incrementation operator.

We’ll see it on the next slide.

New value of x = Old value of x + 10

let a = 2;
a = a + 1;

let x = 100;
x = x + 10;

let a = 2;
a++;

let x = 100;
x += 10;

let a = 2;
a--;

let x = 100;
x -= 10;

This code is equivalent. The one on the
right is using the incrementing operators.

Did you know that JavaScript has
also decrementing operators?

++ incrementing operator
 (increases value of variable by 1)

+= incrementing operator
 (increases value of variable by specified amount)

-- decrementing operator
 (decreases value of variable by 1)

-= decrementing operator
 (decreases value of variable by specified amount)

Using variables in
graphical programs

Graphical instructions

circle(400, 300, 200);

ellipse(400, 300, 300, 200);

rect(400, 300, 300, 200);

line(400, 300, 500, 500);

triangle(400, 100, 200, 400, 600, 500);

arc(400, 300, 300, 200, 0, 180);

point(400, 300);

text('JavaScript', 400, 300);

background("red");

stroke("red");

noStroke();

fill("red");

noFill();

strokeWeight(3);

textSize(10);

Do you still remember the graphical instructions?

Exercise: Tiny house in the middle of the canvas

(350, 250)

(400, 300)

(450, 250)

(400, 200)

100

1
0

0

Center of canvas
800 / 2 = 400 ; 600 / 2 = 300 → (400, 300)

Coordinates of the top-left corner of the square
400 – 100 / 2 = 350; 300 – 100 / 2 = 250 → (350, 250)

Roof top
x = 400; y = 300 – 100 / 2 – 100 / 2 = 200 → (400, 200)

Coordinates of the top-right corner of the square
400 + 100 / 2 = 450; 300 – 100 / 2 = 250 → (450, 250)

50

800

6
0

0

rect(350, 250, 100, 100);
line(350, 250, 400, 200);
line(400, 200, 450, 250);

With calculations ready, it
is trivial to draw the house
using just 3 instructions!

Try the program. Press

https://codeguppy.com/code.html?js/60

Let the computer calculate

In the tiny house program, try to replace:

• 350 with 400 - 100 /2
• 250 with 300 - 100 / 2

and

• 450 with 400 + 100 / 2
• 200 with 300 - 100 / 2 - 100 / 2

When ready, Press Run

We will replace the specified
numbers with expressions, so we

let the computer find out the
answers!

(don’t use variables yet)

The code should look like this…
… and should draw the same

tiny house!

A bigger house…

• Let’s suppose we changed our mind, and we need to draw a bigger house.
Instead of 100 pixels wide by 100 pixels height, our main square should be
200 by 200 pixels.

• Since our code contains the expressions that do the calculations, we only
need to replace 100 with 200 wherever is needed.

rect(400 - 200 / 2, 300 - 200 / 2, 200, 200);
line(400 - 200 / 2, 300 - 200 / 2, 400, 300 - 200 /2 - 200 / 2);
line(400, 300 - 200 / 2 - 200 / 2, 400 + 200 / 2, 300 - 200 / 2);

100

1
0

0

200

2
0

0

• Due to expressions … with just 12 replacements in code, we asked the computer to recalculate the new coordinates
• Let’s see how to eliminate even these replacements when we’ll be asked next time to change the size of our house…

https://codeguppy.com/code.html?js/60b

let h = 100;

rect(400 - h / 2, 300 - h / 2, h, h);
line(400 - h / 2, 300 - h / 2, 400, 300 - h /2 - h / 2);
line(400, 300 - h / 2 - h / 2, 400 + h / 2, 300 - h / 2);

let h = 100;

Adding variables to our program

• Let’s clone the previous program and add variable h to the program (to keep the height of the house)
• “h” is used instead of the 100 or 200 values that we used before.

When ready, Press Run

https://codeguppy.com/code.html?js/60c

let x = 400;
let y = 300;
let h = 100;

rect(x - h / 2, y - h / 2, h, h);
line(x - h / 2, y - h / 2, x, y - h /2 - h / 2);
line(x, y - h / 2 - h / 2, x + h / 2, y - h / 2);

Multiple variables

• Our graphical programs are not limited to just 1 variable. As a matter of fact, we can
define practically an unlimited number of variables.

• Let’s define two additional variables named x and y that will hold the coordinates
where we want to draw our mini house.

h

h
(x, y)

Try to complete this task
on your own.

If you encounter
difficulties refer to the
code on the screen.

After you finish, play with
the variables selecting
other values.

https://codeguppy.com/code.html?js/60d

// Declare and initialize variables
let x = 400;
let y = 300;
let h = 100;

// Change the value of x by reassign it
x = 100;

rect(x - h / 2, y - h / 2, h, h);
line(x - h / 2, y - h / 2, x, y - h /2 - h / 2);
line(x, y - h / 2 - h / 2, x + h / 2, y - h / 2);

// Just declare variables
let x;
let y;
let h;

// Then assign values to variables
x = 200;
y = 350;
h = 150;

rect(x - h / 2, y - h / 2, h, h);
line(x - h / 2, y - h / 2, x, y - h /2 - h / 2);
line(x, y - h / 2 - h / 2, x + h / 2, y - h / 2);

Clone the program and add this x = 100; line
This line reassign variable x to 100

Observe where the house is drawn.

Clone again the program and modify it as on the screen
Now the let lines are only declaring the variables, and they
are assigned later-on.

What do you think is happening if you forget to add the
assignment lines?

Having fun with variables
in this graphical program…

https://codeguppy.com/code.html?js/60e
https://codeguppy.com/code.html?js/60f

xt =
(w – wt)

2
+ x

xb = x

yt = y

yb = y + ht

Car body calculations Wheels calculations

yw = y + ht + h

xw1 = x +
(w – wt)

2

xw2 = x + w -
(w – wt)

2side

(x, y)

w

h

ht = (2/ 3) * h

wt = (2/ 3) * w

(xt, yt)

(xb, yb)

rw = 0.3 * h

side

Exercise: Tiny car at x, y coordinates

let x = 100;
let y = 100;

const w = 200;
const h = 50;

...

Write a small program to draw a tiny car at x and y
coordinates.

By changing the values of x and y and re-running the
program, the car should be displayed at different
positions.

Assume body width is 200 and body heigh is 50. See
also drawing on the right with other calculations.

Tip: If value of a variable never
changes, we can use keyword

const instead of let.

Solution on next slide…

https://codeguppy.com/code.html?js/60g

(x, y)

w

h

ht = (2/ 3) * h

wt = (2/ 3) * w

(xt, yt)

(xb, yb)

rw = 0.3 * h

Tiny car at x, y coordinates
let x = 100;
let y = 100;

const w = 200;
const h = 50;
const rp = 0.3;

// Calculate the width and height of top part
let wt = (2 / 3) * w;
let ht = (2 / 3) * h;

// Coordinates of top rectangle
let side = (w - wt) / 2;
let xt = x + side;
let yt = y;

// Coordinates of bottom rectangle
let xb = x;
let yb = y + ht;

// Coordinates of wheels
let xw1 = x + side;
let xw2 = x + w - side;
let yw = y + ht + h;
let rw = h * rp;

rect(xt, yt, wt, ht);
rect(xb, yb, w, h);
circle(xw1, yw, rw);
circle(xw2, yw, rw);

This is our version of program. How is yours?

Try changing the values of x and y and re-run the
program. Do you see the car in different positions?

side

Variables and Constants
In the previous exercises we used several times constants. Let’s see what are constants in JavaScript.

Variables

let x = 100;
let y = 100;

Constants

const w = 200;
const h = 50;

In JavaScript, we define variables using keyword let, each time we know the value of that variable may
change. If we know that the value shouldn’t change, it is recommended to use a const keyword in declaration.

Predefined constants

codeguppy.com provide some predefined constants. You can use them in any program you build.

println(PI);
println(width);
println(height);

PI contains the value of mathematical constant π = 3.14…

width = 800 (the width of the canvas)

height = 600 (the height of the canvas)

Watch for: Uninitialized variables

When you declare a variable in your program, JavaScript doesn’t assign any value to it.
The variable will remain in an “undefined” state until you assign a value.

Always initialize your variables. Uninitialized variables can be a source of errors in your programs.

let a;

println(a);

let a = 100;

println(a);

let a;

a = 100;

println(a);

100 100 undefined

Bonus tip: Exchanging the values of two variables

a b

Let’s say you have two variables a and b, containing the values “dog” and “cat”.

How can we exchange the content of these variables so that a = “cat” and b = “dog” ?

let a = "dog";
let b = "cat";

a = b;
b = a;

println(a);
println(b);

Naïve solution … try to run
the program to see the effect!

Correct solution: Use a
temporary 3rd variable

a b c

a b c

a b c

let a = "dog";
let b = "cat";
let c;

c = a;
a = b;
b = c;

println(a);
println(b);

Run now the program!

c = a;

a = b;

b = c;

https://codeguppy.com/code.html?js/60h

Quick Recap
circle(100, 100, 100);
circle(100, 100, 96);

You can let the computer do
calculations. At the end of the
day, your computer is also a
very powerful calculator!

circle(100, 100, 100);
circle(100, 100, 100 - 4);

let r2 = 100 - 4;
circle(100, 100, 100);
circle(100, 100, r2);

Program with
numbers

Program with
expressions

Program with
variables

• Deciding with if
• What about else?
• Cascading else-if statements
• Comparison operators
• Exercise: Rating system
• Boolean variables and logical expressions
• Exercise: Solving the quadratic equation
• Scope of variables

Chapter VI – Conditional statement

Let’s teach the computer
to take decisions…

if ()
{

}

condition

instruction 1

instruction 2

…

if statement makes possible to execute a block of instructions (aka code block) only if a certain condition is valid.

If the condition is not valid, the instructions between curly braces are not executed.

if (a > 0)
{
 println("a is ", a);
 println("positive");
}

Introducing if statement

Don’t type this yet. Just analyze the syntax.

Deciding with if…

let a = 10;

if (a > 0)
{
 println("a is ", a);
 println("a is positive");
}

println("Conditions are great");

• Type carefully this small program and then
run it. What is the output?

• Now modify the first line of code, and
instead of 10 put there a negative number.
What do you see now?

a > 0

START

a = 10

“a is 10”

“a is positive”

“Conditions are great”

{ }
YES

NO

https://codeguppy.com/code.html?js/80a

if (a > 0)
{
 println("a is ", a);
 println("a is positive");
}

About code blocks

• Remember to write readable code.

• Always ident the code inside the curly braces with one Tab key press . This is important especially if you have
other statements with code blocks inside a code block (e.g. another if inside an if)

• JavaScript is flexible with placement of curly braces, but we recommend (especially for code newbies) to place curly
braces one under the other so you can clearly see the code-block.

if (a > 0) {
 println("a is ", a);
 println("a is positive");

}

TAB

TAB

TAB

Recommended

What else?

let a = -2;

if (a > 0)
{
 println("a is ", a);
 println("a is positive");
}

else
{
 println("a is negative");
}

println("Conditions are great");

• Modify the program to include also an else branch
followed by a new code block

• Don’t use any parenthesis or symbol after else keyword!

a > 0

START

a = -2

“a is 10”

“a is positive”

“Conditions are great”

YES NO

“a is negative”

else block is
executed if
the if one is

not

https://codeguppy.com/code.html?js/80b

Cascading conditions with else if …

let a = 0;

if (a > 0)
{
 println("a is ", a);
 println("a is positive");
}

else if (a === 0)
{
 println("a is zero!");
}

else
{
 println("a is negative");
}

println("Conditions are great");

• Let’s modify the code and add one more “branch” for
an else if statement

a > 0

START

a = 0

“a is 10”

“a is positive”

“Conditions are great”

YES NO

“a is negative”

a === 0

“a is zero”

NOYES

https://codeguppy.com/code.html?js/80c

Independent if statements Cascading else if statements

let a = 10;

if (a > 10)
{
 println("a > 10");
}

if (a > 2)
{
 println("a > 2");
}

if (a > 5)
{
 println("a > 5");
}

if (a > 9)
{
 println("a > 9");
}

let a = 10;

if (a > 10)
{
 println("a > 10");
}

else if (a > 2)
{
 println("a > 2");
}

else if (a > 5)
{
 println("a > 5");
}

else if (a > 9)
{
 println("a > 9");
}

Type in the program on the left. It
contains a series of unrelated if
statements.

 Run it and observe that
all if statements seems to be
evaluated.

Next, modify the program to add
an else keyword in front of the
indicated ifs. Now we have a big if
/ else-if statement with different
branches.

 Run it an observe that if
statements are evaluated until the
first one is found to match. Then
the rest are skipped.

https://codeguppy.com/code.html?js/80d
https://codeguppy.com/code.html?js/80e

let a = 10;

if (a > 10)
{
 println("a > 10");
}

else if (a > 2)
{
 println("a > 2");
}

else if (a > 5)
{
 println("a > 5");
}

else if (a > 9)
{
 println("a > 9");
}

Order of else-if blocks matter!

Always put the most specific
condition first.

In the previous program, we
switched around the order of else-
if blocks. Notice now that the
result is different.

let a = 10;

if (a > 10)
{
 println("a > 10");
}

else if (a > 9)
{
 println("a > 9");
}

else if (a > 5)
{
 println("a > 5");
}

else if (a > 2)
{
 println("a > 2");
}

10

2

5

9

10

9

5

2

https://codeguppy.com/code.html?js/80e
https://codeguppy.com/code.html?js/80f

Operators

100 / 2

3 + 10 / 2

(123 * 453) / 12
4643.25

50

8

Arithmetic operators

+ - * / ()

Do you remember the arithmetic
operators from the variables lesson?

Comparison operators

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

=== Equal

(notice that we use === and no = to compare for
equality. Single = is reserved for variable assignments)

!== Different than

A comparison expression is formed using comparison operators

Besides arithmetic operators, JavaScript has also comparison
operators that can be used inside if statements

Exercise: Rating system

Let’s build a simple rating system using if / else-if statements.
The program needs to display the appropriate message based on the actual rating from variable rating

let rating = 5;

...
println("Excellent!!!");

...
println("Good");

...
println("Average");

...
println("Below average");

If rating is 5!

If rating >= 4

If rating >= 3

Otherwise

Excellent!!!

let rating = 5;

if (rating === 5)
{
 println("Excellent!!!");
}

else if (rating >= 4)
{
 println("Good");
}

else if (rating >= 3)
{
 println("Average");
}

else
{
 println("Below average");
}

Solution for: Rating system

• The program uses an if / else-if statement with cascading
conditions

• Notice that order of conditions matter for our program (if
you put conditions in a different order, you may get an
incorrect result)

Compare this program with your version.

https://codeguppy.com/code.html?js/80g

Boolean variables

• JavaScript evaluates all conditions and logical
expressions (also known as Boolean expressions) to
either true or false.

• true and false are keywords inside JavaScript language

• Variables can be also of type Boolean – which means
they hold a value that is either true or false, like the
variable isGoodRating.

let rating = 4.5;
let hasGoodRating;

if (rating > 4)
{
 println("Good rating!");
 hasGoodRating = true;
}

// Compare boolean variable with true
if (hasGoodRating === true)
{
 println("Good rating!");
}

// No need to put === true
// when comparing to true
if (hasGoodRating)
{
 println("Good rating!");
}

Logical expressions inside ifs

JavaScript has logical operators which enables to combine simple comparison expression in a bigger logical expression

JavaScript
Operator

Meaning JavaScript Example Pseudo code

 && AND

 || OR

 ! NOT

if (a < 10 && b > 5)

if (a > 100 || b > 100)

if (!(a<10)) IF NOT (a < 10) THEN { … }

IF a > 100 OR b > 100 THEN { … }

IF a < 10 AND b> 5 THEN { … }

You can use parenthesis if you want to build even bigger logical expressions with multiple conditions.

Truth tables

Value NOT Value
! Value

true false

false true

a b a AND b
a && b

true true true

true false false

false true false

false false false

a b a OR b
a || b

true true true

true false true

false true true

false false false

• Although you can intuitively tell the answer of a
logical / Boolean expression, the following
tables may help.

• They contain every combination possible for
two value that may participate in a Boolean
operation.

let x = 400;
let y = 300;

if (x >= 0 && x < 800 && y >= 0 && y < 600)
{
 println("Inside canvas");
 circle(x, y, 10);
}

else
{
 println("Outside canvas");
}

Example
If we know the x and y coordinates of a point, we can determine if is inside the canvas
by using a logical expression to check if they are in the range 0…800 and 0…600

Run this program and vary the x and y value to test both blocks.

let x = 400;
let y = 300;

let insideCanvas = (x >= 0 && x < 800 && y >= 0 && y < 600);
let outsideCanvas = !insideCanvas;

if (insideCanvas)
{
 println("Inside canvas");
 circle(x, y, 10);
}

if (outsideCanvas)
{
 println("Outside canvas");
}

We modified the program,
assigning the result of the
logical expression to a variable
named insideCanvas.

We also created its opposite
outsideCanvas by using the
NOT ! operator.

This technique enables us to
check multiple times the
variables without writing the
full expression.

Example (cont.)

https://codeguppy.com/code.html?js/80i

Exercise: Solving the quadratic equation

𝑥 =
−𝑏 ± Δ

2𝑎

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

const a = 2;
const b = 3;
const c = -5;

...

let x1 = ...
let x2 = ...

println("x1=", x1);
println("x2=", x2);

x1=1
x2=-2.5

(second-degree polynomial equation)

Quadratic equation is an equation that can be arrange as:

a, b, c are the coefficients and are known numbers.

A quadratic equation has two roots that can be found with formula:

Now let’s start coding!

Before you solve the equation in JavaScript, try to solve it on paper.
What happens if a is zero, or Δ is zero?

Δ = 𝑏2 − 4𝑎𝑐where Δ is the discriminant

const a = 0;
const b = 2;
const c = -5;

if (a === 0)
{
 println("First degree equation!");

 // to do: check also if b is zero

 let x = -c / b;
 println("x=", x);
}

else
{

}

Step 1: Let’s first check if a is zero

When solving big problems, it is useful to work step by
step, and test the program after each step.

𝑥 = −
𝑐

𝑏

If a === 0, then we have a first-degree equation.

Type-in and run this program. Only after you
tested carefully the first if branch, proceed to
write the code for the else branch.

https://codeguppy.com/code.html?js/80k

let delta = b * b - 4 * a * c;

let sqrtDelta = sqrt(delta);

let x1 = (-b + sqrtDelta) / (2 * a);
let x2 = (-b - sqrtDelta) / (2 * a);

println("x1=", x1);
println("x2=", x2);

const a = 2;
const b = 3;
const c = -5;

if (a === 0)
{
 println("First degree equation!");

 // to do: check also if b is zero

 let x = -c / b;
 println("x=", x);
}

else
{

}

Step 2: Add the else branch

Here we are coding the happy-path of the else branch, where
delta is positive, and the equation has two real solutions.

Try to run the program after this addition. Vary the parameters a,
b and c and check if you encounter a situation where delta is
negative.

New: To calculate square root we are using a
mathematical function called sqrt().

const a = 2;
const b = 3;
const c = -5;

if (a === 0)
{
 println("First degree equation!");

 // to do: check also if b is zero

 let x = -c / b;
 println("x=", x);
}

else
{

}

let delta = b * b - 4 * a * c;

if (delta > 0)
{
 let sqrtDelta = sqrt(delta);

 let x1 = (-b + sqrtDelta) / (2 * a);
 let x2 = (-b - sqrtDelta) / (2 * a);

 println("Equation has 2 real roots!");
 println("x1=", x1);
 println("x2=", x2);
}

else if (delta === 0)
{
 println("Equation has 1 root!");
 println("x1 = x2 = ", -b / (2 * a));
}

else
{
 println("Equation has 2 complex roots!");
}

Update the code on the else branch as you see on the
right. We are now testing for different values of delta.

Step 3: Enhance!

const a = 2;
const b = 3;
const c = -5;

if (a === 0)
{
 println("First degree equation!");

 // to do: check also if b is zero

 let x = -c / b;
 println("x=", x);
}

else
{
 let delta = b * b - 4 * a * c;

 if (delta > 0)
 {
 let sqrtDelta = sqrt(delta);

 let x1 = (-b + sqrtDelta) / (2 * a);
 let x2 = (-b - sqrtDelta) / (2 * a);

 println("Equation has 2 real roots!");
 println("x1=", x1);
 println("x2=", x2);
 }

 else if (delta === 0)
 {
 println("Equation has 1 root!");
 println("x1 = x2 = ", -b / (2 * a));
 }

 else
 {
 println("Equation has 2 complex roots!");
 }
}

Step 3: Complete listing

• Our quadratic equation solver program is done! It contains a big
number of lines … therefore it barely fits on the screen.

• Don’t worry – if you built the program step by step, as presented
before, you don’t have to type it again.

• Please note the nested if statements as well as the code
indentation inside the blocks to help with reading of the code.

We left unimplemented a small check for the case when
a = 0 and b = 0. You can solve this as a homework.

https://codeguppy.com/code.html?js/80k

Scope of variables

const a = 0;
const b = 3;
const c = -4;

if (a === 0)
{
 let x = -c / b;

 println("x=", x);
}

println("a=", a);

println("x=", x);

• Variables declared outside any code block are considered “global
variables”. They are visible in all other code blocks and through the
entire program.

• Variables defined inside a code block are considered “local
variables”. They are visible only in that code block. You can declare
variables with the same name in different code blocks. They don’t
interfere with each other since code blocks are small boxes that hold
variables inside.

Try this: In the previous program,
add a println line to print a block

variable outside the block.

• How can we repeat an instruction several times?
• for loop syntax
• Common uses of the for loop
• Exercise: Sum of numbers from 1 to 10
• Exercise: Factorial of n
• Exercise: Display multiplication table
• Exercise: Draw concentrical circles
• Exercise: Lines with for
• Exercise: Draw multiple cars
• Exercise: Color shades
• Exercise: Graph sine function

Chapter VII – for loops

I like to code in JavaScript
I like to code in JavaScript
I like to code in JavaScript
I like to code in JavaScript
I like to code in JavaScript
I like to code in JavaScript
I like to code in JavaScript
I like to code in JavaScript
I like to code in JavaScript
I like to code in JavaScript

println("I like to code in JavaScript");
println("I like to code in JavaScript");
println("I like to code in JavaScript");
println("I like to code in JavaScript");
println("I like to code in JavaScript");
println("I like to code in JavaScript");
println("I like to code in JavaScript");
println("I like to code in JavaScript");
println("I like to code in JavaScript");
println("I like to code in JavaScript");

Repeat the message

Can we ask the
computer to repeat

this line for me?

println("I like to code in JavaScript");

Repeat

10 times

{ }Let’s ask the computer
to repeat this line…

for(let i = 0; i < 10; i++)
{

}

Repeating a code block 10 times

Your lines of code

• Each time you need to repeat a line of code (or multiple lines) several times, use this for loop
template…. Please write it in your notebook.

• You only need to add your lines of code inside the curly braces and specify how many times you
need to repeat.

for(let i = 0; i < 10; i++)
{
 println(“JavaScript");
}

Let’s try it! Step 1: Write the following
snippet of code exactly as you
see on the screen.

for(let i = 0; i < 10; i++)
{

}

Step 2: The only part you may
want to modify, at this time, is
number 10. This specify how
many times to execute the
instructions inside { }

Step 3: Put the instruction(s)
you want to repeat in the for
loop code block, e.g. inside { }Copy the above code in a new program. Make sure you include every

symbol as you see on the screen.

for(let i = 0; i < 10; i++)
{
 println(“JavaScript");
}

Reading the for loop the easy way…

FOR i = 0 TO 10 (exclusive)

Execute block { }

for(let i = 0; i < 10; i++)
{
 ...
 ...
}

for is executing the code block for i = 0 … 10 (exclusive)

repeat these lines as
long as i is less than 10

initialization condition variable update
(increment)

i = 0 execute {…}
i = 1 execute {…}
i = 3 execute {…}
i = 4 execute {…}
i = 5 execute {…}
i = 6 execute {…}
i = 7 execute {…}
i = 8 execute {…}
i = 9 execute {…}

for works by utilizing a variable…

i = 0

i < 10

Execute
Code Block

i++

START

Next instruction

No

Yes

Step 1: JavaScript executes the initialization part just once for each for loop.
Here we’re declaring variable i.

Step 2: Then checks the condition, and if the condition is satisfied, it will
execute the code block, otherwise the for loop is ending.

Step3: Code Block is executed

Step 4: After code block execution the variable is updated according to the
statement in the 3rd position. Here we’re incrementing i.

Step 5: JavaScript repeats from Step 2

Accessing for loop variable inside the code block

• Did you know that you can make use of the for variable inside the code block?

• The code block is executed n times, and each time i has a different value:

i = 0 then execute {…}
i = 1 then execute {…}
i = 2 then execute {…}
…

for(let i = 0; i < 10; i++)
{
 println(i);
}

0 1 2 3 4 5
6 7 8 9

Counting with for. Adjusting the lower and upper bounds

for(let i = 0; i < 10; i++)
{
 println(i);
}

for(let i = 0; i < 10; i++)
{
 println(i + 1);
}

for(let i = 1; i < 11; i++)
{
 println(i);
}

for(let i = 1; i <= 10; i++)
{
 println(i);
}

Can you spot the differences between these programs? How can you explain their output?

1

2

3

4

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

https://codeguppy.com/code.html?js/90b
https://codeguppy.com/code.html?js/90c
https://codeguppy.com/code.html?js/90d
https://codeguppy.com/code.html?js/90e

for(let i = 0; i < 10; i++)
{
 println(i);
}

Counting down

If in the 3rd section of for, you select to decrement the variable (rather than incrementing), you can count down.

for(let i = 10; i > 0; i--)
{

println(i);
}

0 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1

Counting by 1 (same code as before) Counting down by 1

Feel free to update the
lower and upper bound in
this count-down template.

https://codeguppy.com/code.html?js/90b
https://codeguppy.com/code.html?js/90f

for(let i = 0; i < 10; i += 2)
{

println(i);
}

Counting up and down with a different step

for(let i = 30; i >= 0; i -= 5)
{

println(i);
}

0 2 4 6 8 30 25 20 15 10 5 0

Counting by 2 (display even numbers) Counting down by 5

Sometimes is needed to use a counting step different than 1… In the following examples you can see counting up
and down with various steps.

Practice for loops by doing the following exercises:

- Print all integer numbers between 10 and 20
- Print, in inverse order, all integer numbers between 20 and 10 (count down)
- Print all odd numbers between 1 and 29
- Print, in inverse order, all even numbers between 20 and 0

https://codeguppy.com/code.html?js/90g
https://codeguppy.com/code.html?js/90h

You can break out of a for loop

for(let i = 0; i < 10; i++)
{

println(i);

if (i >= 5)
{

break;
}

}

break; is a useful keyword. You can use it
to break out a for loop at any time.

Notice that break is not a typical command,
therefore you don’t invoke it with ().

We will see more uses of for - break in the
future lessons.

0 1 2 3 4 5

{
 println("I");
 println("like");
 println("JavaScript");
}

for Code Blocks

The for statement is followed by a code block (e.g. a group of instructions enclosed by curly
braces { … })
This allows us to repeat multiple instructions together for each step in the for loop.

FOR i = 0 TO 10 REPEAT THESE INSTRUCTIONS

As with the if code
block, you can add

multiple instructions
in a code block

Scope of variables

The code block of a for loop has the same rules as the code block
we used for the if statement.

• Variables declared outside any code block are considered
“global variables”. They are visible in all other code blocks and
through the entire program.

• Variables defined inside a code block are considered “local
variables”. They are visible only in that code block.

• Variables define in the for line (e.g. let i = 0;) are visible in the
code block of that particular for only.

let s = "Hello";

for(let i = 0; i < 10; i++)
{

println(s);
println(i);

}

println(i);

for loops are fun…

… let’s see some exercises

Starting total (sum): 0

Old sum + Number = New sum

0 + 1 = 1

1 + 2 = 3

3 + 3 = 6

6 + 4 = 10

10 + 5 = 15

15 + 6 = 21

21 + 7 = 28

28 + 8 = 36

36 + 9 = 45

45 + 10 = 55

Exercise: Sum of numbers from 1 to 10

We will use a
simple algorithm
that even us
humans are using
when we’re
calculating the
sum of a series of
numbers:

We add all the
numbers, one by
one, to the total.

START

sum = 0

FOR n = 1 TO 10

sum = sum + n

PRINT sum

STOP

• Let’s use a for loop to calculate the sum of numbers from 1 to 10

Exercise: Sum of numbers from 1 to 10

• Let’s use a for loop to calculate the sum of numbers from 1 to 10

• We will use a simple algorithm that even us humans are using when we’re calculating the sum of a series of
numbers: we add them one by one to the total.

let sum = 0;

for(let i = 1; i <= 10; i++)
{

sum += i;
// println(sum);

}

println("Sum=", sum);

Our total (e.g. variable sum) is initial 0

We will cycle through all the numbers
from 1 to 10 using a for loop

And add each number to variable sum
(e.g. our total grows bigger with each
number added)

We display the total sum

Tip: Uncomment the println line inside the for loop to inspect the sum variable as it grows!

https://codeguppy.com/code.html?js/90i

Exercise: Factorial of 10

• From math, we know that factorial of 10 is the product of all numbers from 1 to 10.
10! = 1 * 2 * 3 * … * 10

• We are using the same algorithm that we used for sum of numbers to calculate factorial. The only difference is
that our total variable will be initiated with 1 (neutral element to multiplication)

let prod = 1;

for(let i = 1; i <= 10; i++)
{
 prod = prod * i;
}

println("Factorial=", prod);

Our total (e.g. variable prod) is initial 1

We will cycle through all the numbers
from 1 to 10 using a for loop

Multiply the previous product hold in prod
variable to the new number

We display the total prod

Tip: Add a println line inside the for loop to inspect the variable prod as it grows!

https://codeguppy.com/code.html?js/90j

Exercise: Display multiplication table

• Let’s display the multiplication table with n (where n = 1, 2, …)

• We don’t have any difficult algorithm here, just a coordinated print of several pieces of text and numbers

const n = 2;

for(let i = 1; i <= 10; i++)
{
 let prod = n * i;
 println(n, " * ", i, " = ", prod);
}

2 * 1 = 2

2 * 2 = 4

2 * 3 = 6

2 * 4 = 8

2 * 5 = 10

2 * 6 = 12

2 * 7 = 14

2 * 8 = 16

2 * 9 = 18

2 * 10 = 20

https://codeguppy.com/code.html?js/90k

Exercise: Draw concentrical circles

for(let r = 300; r >= 0; r -= 10)
{

circle(400, 300, r);
}

• Let’s try now a graphical program with for.

• This enables us to practice for on a bigger range
and with a different step to obtain these
concentrical circles.

• Play with the numbers to adjust the effect.

https://codeguppy.com/code.html?js/90l

Exercise: Horizontal and vertical lines

const squareSize = 25;

// Horizontal lines
for(let y = 0; y < 600; y += squareSize)
{
 line(0, y, 800, y);
}

// Vertical lines
for(let x = 0; x < 800; x += squareSize)
{
 line(x, 0, x, 600);
}

• Feel free to add as many for loops as you need in
your program

• This one has two for loops to draw horizontal
lines and then vertical lines

https://codeguppy.com/code.html?js/90m

Exercise: Row of cars
let x = 100;
let y = 100;

const w = 200;
const h = 50;
const rp = 0.3;

// Calculate the width and height of top part
let wt = (2 / 3) * w;
let ht = (2 / 3) * h;

// Coordinates of top rectangle
let side = (w - wt) / 2;
let xt = x + side;
let yt = y;

// Coordinates of bottom rectangle
let xb = x;
let yb = y + ht;

// Coordinates of wheels
let xw1 = x + side;
let xw2 = x + w - side;
let yw = y + ht + h;
let rw = h * rp;

rect(xt, yt, wt, ht);
rect(xb, yb, w, h);
circle(xw1, yw, rw);
circle(xw2, yw, rw);

Do you remember this small program that we wrote in
the variables lesson?

It draws a simple car on the screen.

Don’t type it again. You should find it under “My Programs”.

Please create a copy of it and update it with a for loop so will
display a row of cars instead of a single car.

Exercise: Row of cars (cont)const y = 100;
const w = 60;
const h = 15;

for(let x = 0; x < 800; x += 80)
{
 // Calculate the width and height of top part
 let wt = (2 / 3) * w;
 let ht = (2 / 3) * h;

 // Coordinates of top rectangle
 let side = (w - wt) / 2;
 let xt = x + side;
 let yt = y;

 // Coordinates of bottom rectangle
 let xb = x;
 let yb = y + ht;

 // Coordinates of wheels
 let xw1 = x + side;
 let xw2 = x + w - side;
 let yw = y + ht + h;
 let rw = h * 0.3;

 rect(xt, yt, wt, ht);
 rect(xb, yb, w, h);
 circle(xw1, yw, rw);
 circle(xw2, yw, rw);
}

• This is our version. We place the code from the
previous program in code block of a for loop (we also
slightly updated the car code to draw a smaller car).

• The for loop is cycling on x coordinates from 0 till end
of screen (with a step of 80 – bigger than the car).

• y coordinate is constant and is defined at the beginning
of the program

https://codeguppy.com/code.html?js/90n

Exercise: Color shades

• This small program draws a series of red shades.

• As you remember each color has three primary component: RED, GREEN and BLUE

• The program uses a for loop to cycle the RED component then draw a colored band
using a filled rectangle.

const bandSize = 20;
const noBands = 600 / bandSize;

for(let i = 0; i < noBands; i++)
{
 let y = bandSize * i;
 let clr = i * 10;

 fill(clr, 0, 0);
 rect(0, y, 800, bandSize);
}

https://codeguppy.com/code.html?js/90o

Exercise: Finding prime numbers

• Let’s try a math exercise.
• Let’s write a JavaScript program that will determine if a number is prime or not!

“a whole number greater
than 1 that cannot be
exactly divided by any

whole number other than
itself and 1”

-- Oxford Languages
15485863

According to the definition, to check if number n is prime, we can divide it
will all numbers bigger than 1 and smaller than n. If cannot be exactly
divided, then is prime!

Here we can do a small optimization: we can stop the check at 𝑛.
Why? There is a simple mathematical proof for this. We let this open for
your discovery.

2 3 4 5 n - 1𝑛… …

n

n1i =

Algorithm

const n = 17;
let isPrime = true;

for(let i = 2; i <= sqrt(n); i++)
{
 if (n % i === 0)
 {
 isPrime = false;
 break;
 }
}

if (isPrime)
{
 println(n, " is prime");
}

else
{
 println(n, " is not prime");
}

n is the number we want to check if is prime

We assume n is prime

We loop through all the numbers up to 𝑛.
(in JavaScript we use sqrt(n) to calculate 𝑛)

% is a special operator in JavaScript.
It gives us the reminder of division.

If reminder is 0, then the two numbers can be
exactly divided, and we conclude that our
number is not prime. We break the for to sop
checking against other numbers.

We print the result according to the Boolean
variable isPrime.

https://codeguppy.com/code.html?js/90r

Exercise: Graphing sine function

• Let’s try another math exercise!

• We want to draw the sine function using
vertical lines

0 90 180 270 360

• Graph of sin 𝑥 when 𝑥 goes from 0 to 360 degrees

• Function has maximum value 1 for x = 90 and minimum value -1 for x = 270

sin 𝑥 graph

-1

1

Scaling the graph

On horizontal:

0 – 360 → 0 – 800

On vertical:

-1 – 1 → 0 – 600

-1

1

0 360

0

0°

800

360°
-1 600

1 0

d (distance between 2 lines)
d = 800 / 360

const d = 800 / 360;

0 300

On vertical

We will scale the value of sin(x)
which is between 0...1
to interval 0 … 300

let v = 300 * sin(angle);

Drawing algorithm

• We will decide how
many pixels d we
want between lines

• We will cycle using a
for loop through all
angle values
between 0 … 360

• We will translate the
angle value to an x
value: x = angle * d

• We will calculate
sin(angle) and then
translate this to
canvas value v:
v = 300* sin(angle)

• The y coordinate is:
y = 300 - v

x = angle * d
y = 300 - v

angle

const d = 800 / 360;

for(let angle = 0; angle < 360; angle += 5)
{
 // sin returns values between -1 and 1
 // we multiply with 300 to stretch on vertical
 let v = 300 * sin(angle);

 let x = angle * d;
 let y = 300;

 line(x, y, x, y - v);
}

Exercise: Graphing sine function (solution)

• This is the complete program. On the right you can see the lines taking shape of a sine graph.

https://codeguppy.com/code.html?js/90p

const d = 800 / 360;

for(let angle = 0; angle < 360; angle += 5)
{
 let v = 300 * sin(angle);

 let x = angle * d;
 let y = 300;

 line(x, y, x, y - v);
}

const n = 1;
const d = 800 / (360 * n);

for(let angle = 0; angle < 360 * n; angle += 5)
{
 let v = 300 * sin(angle);

 let x = angle * d;
 let y = 300;

 line(x, y, x, y - v);
}

Exercise: Graphing sine function (bigger interval)
• Sine is a periodic function. We can update your program to choose how many periods we want to display.

Try changing the value of n and re-run the program (the one on the right).

https://codeguppy.com/code.html?js/90p
https://codeguppy.com/code.html?js/90q

Next steps

• Try to code in your spare time! Don’t be
frustrated if you’ll encounter errors. Coding
required lots of practice until you get
comfortable writing programs.

• When working on a program, try to run the
program from time to time to avoid
accumulation of errors.

• In the next lesson, we’ll revisit the for loops
(doing mostly nested fors), then we’ll learn
about functions.

Conditions Functions

Nested forsVariables

• for loop recap
• Introducing nested for loops

• Exercise: Multiplication tables 1 to 10
• Exercise: Grid of concentrical circles
• Exercise: Brick pattern
• Exercise: Maze pattern
• Exercise: Grid of animated sprites

Chapter VIII – Nested for loops

for (let i = 0; i < 10; i++)
{

}

Declare and
initialize a variable

Stop condition. For will
work as long as this
condition is true.

Variable update.
Usually increment or
decrement.

…

Code block (block on JavaScript statements) that will be repeated
as long as the Stop Condition in for is true.

Structure of a
typical for loop

FROM TO STEP

Nested for loops

for(let i = 0; i < 10; i++)
{
 for(let j = 0; j < 10; j++)
 {
 println("Hello");
 }

}

Outer for loop
(uses variable i)

Inner for loop
(uses variable j)

The inner loop runs
many times inside
the outer loop in
accordance with
outer loop
configuration.

Question: What do you think is the output of this program?

for(let i = 0; i < 10; i++)
{
 for(let j = 0; j < 10; j++)
 {
 println("Hello");
 }
}

for(let i = 0; i < 10; i++)
{
 for(let j = 0; j < 10; j++)
 {
 println("i=", i, " j=", j);
 }
}

Nested for loops observations

• Use different variables for the outer and inner for loops. A typical generic option is to use i and j. Of course, it is
recommended to use the variable name that makes sense for your program.

• In the following examples, the inner for loop is executed is executed for each value of the i variable in the outer for
loop

• The println line in the inner for loop is therefore executed 100 times (10 * 10). You can see this better in the second
program where we display the values of variables i and j. Notice that i gets incremented only after a complete inner
loop is executed.

https://codeguppy.com/code.html?js/95
https://codeguppy.com/code.html?js/95b

const n = 2;

for(let i = 1; i <= 10; i++)
{
 let prod = n * i;
 println(n, " * ", i, " = ", prod);
}

for(let no = 1; no <= 10; no++)
{

}

…

Exercise: Multiplication tables 1 to 10

Multiplication table with 2 (code from previous lesson)

• Let’s take the code of the multiplication table with 2 that we wrote in the last lesson and add it in the code block of an
outer for.

• Adjust the code to make use of the outer for variable

Solution on next slide…

Exercise: Multiplication tables 1 to 10 (solution)

for(let no = 1; no <= 10; no++)
{

for(let i = 1; i <= 10; i++)
{

let prod = no * i;
println(no, " * ", i, " = ", prod);

}

println("");
}

Use variable no
inside the inner
for loop to vary
the first number.

1 * 1 = 1

1 * 2 = 2

1 * 3 = 3

1 * 4 = 4

1 * 5 = 5

1 * 6 = 6

1 * 7 = 7

1 * 8 = 8

1 * 9 = 9

1 * 10 = 10

2 * 1 = 2

2 * 2 = 4

2 * 3 = 6

2 * 4 = 8

2 * 5 = 10

…

10 * 1 = 10

10 * 2 = 20

10 * 3 = 30

10 * 4 = 40

10 * 5 = 50

10 * 6 = 60

10 * 7 = 70

10 * 8 = 80

10 * 9 = 90

10 * 10 = 100

Use an empty
print to create a
separation line
between tables.There are 2 statements inside the outer for:

- the inner for
- the println line

https://codeguppy.com/code.html?js/95c

Exercise: Grid of concentrical circles

• Let’s draw a grid of 8 x 6 discs

• Each disc is a series of concentrical
circles

• Do you want to attempt the exercise
yourselves, or do you want to see the
solution?

row=0

row=1

row=2

row=3

row=4

row=5

col=0 col=1 col=2 col=3 col=4 col=5 col=6 col=7

• We need to place the
circles in an imaginary
8 columns x 6 rows grid

• Instead of discs, we will
first draw regular
circles

• For each circle we
need to determine the
(x, y) coordinates of
the center based on
the row and column
position

• We’ll draw the circles
row by row starting
with the top row till
the bottom

(x, y)

// Square size
const squareSize = 100;

// Calculates the number of rows and columns that fit on the screen
const rows = 600 / squareSize;
const cols = 800 / squareSize;

// Loop through all the columns
for(let col = 0; col < cols; col++)
{
 let x = squareSize / 2 + col * squareSize; // 50 150 250 350 ...
 let y = squareSize / 2;

 circle(x, y, squareSize / 2);
}

• Let’s display the first row of circles using a single for loop (we’ll calculate the x and y of circles inside the for loop)

• We also take the opportunity to set some variables. Instead of hardcoding the number of rows and columns, we
calculate them based on the square size. In this way, we can vary the number of circles via a single update.

Type and
run this
program

https://codeguppy.com/code.html?js/90e

const squareSize = 100;
const rows = 600 / squareSize;
const cols = 800 / squareSize;

// Loop through all the rows
for(let row = 0; row < rows; row++)
{
 // For each row, loop through all the columns
 for(let col = 0; col < cols; col++)
 {
 let x = squareSize / 2 + col * squareSize;
 let y = squareSize / 2 + row * squareSize;

 circle(x, y, squareSize / 2);
 }
}

• We’ll wrap now the for loop that draws a line of circles in an outer for that will loop through all the rows on the canvas

• We’ll also use the variable of the outer for (row) inside the inner for to calculate the y coordinate of each row of circles

Nested for loops are great
for 2D operations

https://codeguppy.com/code.html?js/90f

// Square size. Change this number and re-run the program
const squareSize = 100;

// Calculates the number of rows and columns that fit on the screen
const rows = 600 / squareSize;
const cols = 800 / squareSize;

// Loop through all the rows
for(let row = 0; row < rows; row++)
{
 // For each row, loop through all the columns
 for(let col = 0; col < cols; col++)
 {
 let x = squareSize / 2 + col * squareSize;
 let y = squareSize / 2 + row * squareSize;

 // For each circle, draw inner circles (concentrical)
 for(let r = squareSize / 2; r > 0; r -= 5)
 {
 circle(x, y, r);
 }
 }
}

Exercise: Grid of concentrical circles (full solution)
• To draw discs (e.g. concentrical circles)

instead of regular circles, we place yet
another for loop inside the inner one.

• Our code contains now three nested
for loops!

• Note: The performance of your
program may degrade if you use too
many nested for loops.

https://codeguppy.com/code.html?js/95d

// Number of circles
let n = 6 * 8;

let x = 50;
let y = 50;

for(let i = 0; i < n; i++)
{
 circle(x, y, 50);

 x += 100;

 if (x > 800)
 {
 x = 50;
 y += 100;
 }

 if (y > 600)
 {
 break;
 }
}

Exercise: Grid of circles (with a single for loop)
• Did you know that you can also use a single for loop to draw the grid of circles?

• The version on the right, uses if conditions to reset x and increase the y coordinate
when a row is completed (we dropped concentrical circles from program)

const rows = 6;
const cols = 8;

// Loop through all the rows
for(let row = 0; row < rows; row++)
{
 // For each row, loop through the columns
 for(let col = 0; col < cols; col++)
 {
 let x = 50 + col * 100;
 let y = 50 + row * 100;

 circle(x, y, 50);
 }
}

Type in this single for
version. It is good for
recapping ifs.

Nested for version (this is our previous program simplified)

https://codeguppy.com/code.html?js/95g

Exercise: Brick pattern

• Let’s draw now a brick pattern

• We can achieve this easily with a nested
for loop

• We will also divide the canvas in rows and columns

• Instead of drawing a circle inside each imaginary square, we will draw a line pattern of 4 lines

• When these patterns will repeat in the adjacent cells, a brick pattern will emerge.

…

…

…

…

Exercise: Brick pattern (planning)

const squareSize = 50;

let x = 100;
let y = 100;

// Draw a single brick...
line(x, y, x + squareSize, y);
line(x, y + squareSize / 2, x + squareSize, y + squareSize / 2);
line(x + squareSize / 4, y, x + squareSize / 4, y + squareSize / 2);
line(x + 3 * squareSize / 4, y + squareSize / 2, x + 3 * squareSize / 4, y + squareSize);

• Let’s write first the code that draws a single brick

FOR row = 0 TO 6

FOR col = 0 TO 8

Draw Brick

• After we test and make sure that the code for
drawing a brick is running, we will wrap the code in
a nested for (like in previous exercise)

• The outer for will loop on rows and the inner for on
columns

https://codeguppy.com/code.html?js/95i

// Square size. Change this number and re-run the program
const squareSize = 100;

// Calculates the number of rows and columns that fit on the screen
const rows = 600 / squareSize;
const cols = 800 / squareSize;

// Loop through all the rows
for(let row = 0; row < rows; row++)
{
 // For each row, loop through all the columns
 for(let col = 0; col < cols; col++)
 {
 let x = col * squareSize;
 let y = row * squareSize;

 // Draw brick...
 line(x, y, x + squareSize, y);
 line(x, y + squareSize / 2, x + squareSize, y + squareSize / 2);
 line(x + squareSize / 4, y, x + squareSize / 4, y + squareSize / 2);
 line(x + 3 * squareSize / 4, y + squareSize / 2, x + 3 * squareSize / 4, y + squareSize);
 }
}

Exercise: Brick pattern (full solution)

https://codeguppy.com/code.html?js/95h

Exercise: Maze pattern

• This exercise takes the brick pattern one step
forward

• The pattern that you was popular in the early
days of microcomputers, especially on the
Commodore 64 computer

• Let’s see what it takes to implement it in
JavaScript!

• We will also divide the canvas in rows and columns (e.g. cells)

• In each cell we will draw a random diagonal line (either left to right or right to left).

• The lines will appear as they are connected to the ones from the adjacent cells, therefore a maze pattern will emerge

…

…

…

…

Exercise: Maze pattern (planning)

// Square size. Change this number and re-run
const squareSize = 25;

// Calculates the number of rows and columns
const rows = 600 / squareSize;
const cols = 800 / squareSize;

// Loop through all the rows
for(let row = 0; row < rows; row++)
{
 // For each row, loop through all the columns
 for(let col = 0; col < cols; col++)
 {
 let x = col * squareSize;
 let y = row * squareSize;

 rect(x, y, squareSize, squareSize);
 }
}

Nested for loop to process the imaginary rows and columns grid

• The program uses a nested for to loop
over rows and columns

• In the inner for we calculate x and y of
each imaginary square

• Let’s temporarily draw a rectangle (e.g.
square) at those coordinates to see if the
grid is display as intended

When done typing, run the program

// n random between 0 and 1...
let n = random();

if (n < 0.5)
{
 // line \
 line(x, y, x + squareSize, y + squareSize);
}

else
{
 // line /
 line(x + squareSize, y, x, y + squareSize);
}

...

for(let row = 0; row < rows; row++)
{
 for(let col = 0; col < cols; col++)
 {
 let x = col * squareSize;
 let y = row * squareSize;

 rect(x, y, squareSize, squareSize);

 }
}

The pattern drawing code

• We will now replace the “rect” instruction with a few lines of code that will randomly draw diagonal lines (either \ or /)
based on a random number.

• In the code below n is a decimal random number between 0 and 1. There is 50% probability it will be less than 0.5 and 50%
probability that is above 0.5 (therefore the if condition). random() is a built-in function that gives random numbers.

// Square size. Change this number and re-run
const squareSize = 25;

// Calculates the number of rows and columns
const rows = 600 / squareSize;
const cols = 800 / squareSize;

// Loop through all the rows
for(let row = 0; row < rows; row++)
{
 // For each row, loop through all the columns
 for(let col = 0; col < cols; col++)
 {
 let x = col * squareSize;
 let y = row * squareSize;

 // n random between 0 and 1...
 let n = random();

 if (n < 0.5)
 {
 // line \
 line(x, y, x + squareSize, y + squareSize);
 }
 else
 {
 // line /
 line(x + squareSize, y, x, y + squareSize);
 }
 }
}

This is the complete listing of the
maze program!

https://codeguppy.com/code.html?js/95j

let rows = 6;
let cols = 8;

for(let row = 0; row < rows; row++)
{
 for(let col = 0; col < cols; col++)
 {
 let x = 50 + col * 100;
 let y = 50 + row * 100;

 sprite('game.walk', x, y, 0.5);
 }
}

Exercise: Lots of sprites!

• Remember the first hour of code when we dragged and dropped a sprite in the code area? That action used to
create sprite instructions for us.

• Let’s try to put that instruction in a nested for and try to create a grid of sprites! Type in the program to see the
effect.

https://codeguppy.com/code.html?js/95k

https://codeguppy.com
Free coding platform

https://codeguppy.com/

	Slide 1
	Slide 2
	Slide 3: What is coding?
	Slide 4: Programming languages
	Slide 5: Different kinds of programming languages
	Slide 6: Why learn JavaScript?
	Slide 7
	Slide 8
	Slide 9: Main Page
	Slide 10: Code Editor
	Slide 11: Feel free to explore the editor…
	Slide 12
	Slide 13: Launching the code editor
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Let’s play with built-in assets
	Slide 18: Drag and drop a sprite
	Slide 19: Each sprite outputs a different line of code…
	Slide 20: Let’s test our code…
	Slide 21: Stopping the program
	Slide 22
	Slide 23
	Slide 24: Let’s build now a greeting card…
	Slide 25
	Slide 26: Naming and saving the program
	Slide 27: Sharing programs…
	Slide 28
	Slide 29: Let’s understand the canvas
	Slide 30: Pixels and Coordinates
	Slide 31: Our first type-in program
	Slide 32
	Slide 33
	Slide 34: Write readable code
	Slide 35: How many circles can you draw?
	Slide 36: Let’s draw a bear using circles…
	Slide 37: Type carefully the program that you see in the listing
	Slide 38
	Slide 39: Homework
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Other graphical instructions
	Slide 44
	Slide 45: Let’s draw an ellipse
	Slide 46: Let’s draw a rectangle
	Slide 47: Let’s draw some lines
	Slide 48: Let’s draw a triangle
	Slide 49: Let’s draw an arc
	Slide 50: Let’s draw a single point!
	Slide 51: How about adding some text?
	Slide 52
	Slide 53: Did you notice the pattern of these JavaScript instructions?
	Slide 54: Graphical instructions reference
	Slide 55: What if I forget the syntax of these instructions?
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Homework
	Slide 60: Homework
	Slide 61
	Slide 62: What have we learned about?
	Slide 63: Let’s see how to add some color…
	Slide 64: First, let’s set the background color…
	Slide 65: What is background() doing?
	Slide 66
	Slide 67: Now, let’s set the outline color (aka the stroke)…
	Slide 68: What is stroke() doing?
	Slide 69
	Slide 70: Next, let’s set the fill color…
	Slide 71: What is fill() doing?
	Slide 72: There are plenty of colors and shades you can choose…
	Slide 73: Color palette
	Slide 74: What if the colors from codeguppy palette are not enough?
	Slide 75
	Slide 76: Using RGB colors in JavaScript
	Slide 77: Filled shapes with no outline (no stroke)
	Slide 78: Removing the outline…
	Slide 79: Can you select a different thickness for strokes?
	Slide 80: You can also remove the fill color!
	Slide 81: Text can be as big as you want
	Slide 82: Drawing Shapes
	Slide 83: Typing time! Let’s type-in this program…
	Slide 84
	Slide 85: Homework
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: Introducing variables
	Slide 94
	Slide 95: You can declare and assign variables in one line of code
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109: Graphical instructions
	Slide 110: Exercise: Tiny house in the middle of the canvas
	Slide 111: Let the computer calculate
	Slide 112: The code should look like this…
	Slide 113: A bigger house…
	Slide 114: Adding variables to our program
	Slide 115: Multiple variables
	Slide 116
	Slide 117: Exercise: Tiny car at x, y coordinates
	Slide 118: Tiny car at x, y coordinates
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123: Quick Recap
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146: Scope of variables
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161: Scope of variables
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181: Next steps
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204

