

Creative Coding

For Kids

A Structured Course of Short Projects

For Young and New Coders

by Tariq Rashid

[codeguppy.com edition]

- 2 -

- 3 -

Contents

Introduction 5

0.0 - Getting Set Up 10

Level 1 - First Steps 14

1.1 - First Shapes 15

1.2 - Coordinates & Size 29

1.3 - Random Numbers 49

1.4 - Simple Variables 64

Level 2 - Progressing 77

2.1 - Simple Functions 79

2.2 - Repeating Things 92

2.3 - More Functions 101

2.4 - Mixing Colours 111

2.5 - More Loops 125

2.6 - Artistic Maths 136

2.7 - More Colour 156

2.8 - Loops Inside Loops 175

2.9 - See-Through Colour 193

- 4 -

Level 3 - Advancing 204

3.1 - Not So Random Noise 205

3.2 - Moving Around A Circle 228

3.3 - Patterns Inside Patterns 245

3.4 - More Flexible Loops 264

3.5 - Classes And Objects 275

3.6 - Code That Creates Code 306

Saving & Sharing Your Work 336

- 5 -

Introduction

A Course For Young And New Coders

This course was developed in response to demand from teachers and

parents for a child-friendly course that:

● engages students visually

● avoids complicated technology setup

● teaches programming and computer science concepts

They found that many teaching resources were not designed with young or

non-technical students in mind. Long passages of prose, technical jargon,

over-complicated examples and unexplained code, put up barriers that

many students couldn’t get over.

This course is specifically designed to be accessible to young learners, with

language carefully chosen to maximize understanding. The course projects

are kept short, with lots of illustrations, and planned breakpoints for

exploring and playing.

As students progress through the course, they will learn about, and gain

experience with, programming and computer science concepts that are

applicable to many other programming languages they might learn in

future.

- 6 -

Why Learn To Code?

Coding and algorithmic thinking are important life skills in the increasingly

digital world we live in.

Many education curricula have been updated ensure that children are

digitally literate, equipped to participate in a digital economy, able to

develop their own technology ideas, and be better informed consumers and

citizens.

Coding is considered by many to be as essential as reading and writing -

Reading, Writing, Coding.

Coding is also fun and creative! Many people do it just for pleasure. A

growing number of artists now use code as their main method for creating

art.

Who Is This Course For?

● Students as young as 7 can make a start on the first few projects as

they are simple, easy, and don’t require a lot of background

knowledge or extended periods of concentration.

● Secondary school students aged 11-17 will enjoy the more

interesting concepts developed during the course, including seeing

how the maths and physics they have learned can be applied

creatively.

● Talented and more confident students will enjoy the later projects

which introduce more sophisticated, and rewarding, concepts. Effort

has been made to ensure these too are as accessible as possible.

- 7 -

● Home educated students will find this course useful as it introduces

a broad range of key programming and computer science concepts in

a fun, visual, and creative way that also encourages students to

experiment and develop autonomous research and problem solving

skills.

● Adults learning to code for the first time will also find this course a

gentle and friendly introduction to coding that avoids unnecessary

jargon and technical complexity.

Tested & Refined

This course is has been tested and refined with feedback from children

aged 6-11 in code clubs, students aged 11-17 at secondary school or in

home education, university undergraduates, and also adult members of

creative coding and algorithmic art groups.

I’m really pleased with the artists who had little previous experience, yet

very quickly become confident and creative with code.

In particular, I’m proud of the children who tried this course and have now

found a talent or a passion they didn’t know they had.

Teaching Method - Learning By Doing

This course consists of a progression of short projects. Each project builds

on the knowledge and experience developed in previous projects.

Each project starts by introducing a new idea, and quickly gets students

coding. At regular points in each project students are encouraged to

experiment with the ideas being developed.

- 8 -

This hands-on practice, experimentation and play, is critical to learning.

That also includes learning from getting things wrong, something we need

to encourage far more in the teaching of computer science and coding.

Simply reading this book without taking part in the suggested practice will

not be as effective for learning to code, developing algorithmic thinking, and

developing a feel for the ideas and coding methods.

Each project ends with a challenge that is calibrated to stretch talented or

enthusiastic students by applying the ideas they’ve just learned in new

ways, and practising doing research to find solutions for themselves.

The Technology

Although we don’t dwell on it in the course, the programming language that

students learn is JavaScript, one of the most important languages in

today’s digital age.

We use codeguppy.com, an online coding environment based on p5js.

Students will code entirely on the web, and see their results on the web.

This simplicity avoids the need for complicated software and also avoids

students needing to grapple with source code files and editors.

p5js itself was developed from Processing. Processing and p5js are

taught to students at schools, universities and design colleges all over the

world.

Students can share their creations as easily as sharing a web link. Anyone

who has the link can see both their code and the designs their code draws.

This course doesn’t focus on the technology, keeping it out of the way as

much as possible, to ensure the focus remains on concepts, ideas and

creativity.

- 9 -

Get In Touch

I’d love to discuss ideas, challenges or questions raised by this course.

I’d also love to hear about the great art students have created.

You can contact me by email makeyourownalgorithmicart@gmail.com or

on twitter @algorithmic_art.

Advanced codeguppy.com users that graduate from codeguppy.com

environment to pure p5.js sketches may also find useful author’s YouTube

channel:

● https://www.youtube.com/c/algorithmicart

Learning Together

Learning to code and creating digital art is even more fun when you’re part

of a supportive community.

I recommend you find a children’s code club or creative coding community

near you.

mailto:makeyourownalgorithmicart@gmail.com
https://twitter.com/algorithmic_art
https://www.youtube.com/c/algorithmicart

- 10 -

0.0 - Getting Set Up

- 11 -

Start Your Browser

We’re going to be using a website called codeguppy.com.

It’s free and makes coding really easy - and fun. There is no need to install

any software. All we need is a web browser.

Start your favorite web browser. Yours might be Chrome, Firefox, or Safari.

- 12 -

Sign Up

We need to create our codeguppy.com account.

Go to www.codeguppy.com by typing it into the web address bar at the

top.

You should see the website looking like this:

Click JOIN FOR FREE.

Choose “Register with email” and enter your email address and a password

that you will use to log into codeguppy.com in future.

Make sure you confirm your account by clicking the link that will be sent to

you via email.

http://www.codeguppy.com/

- 13 -

Every time you log in, you will be taken to a page that looks like this:

You can use the two main buttons “Tutorials” and “My Programs” to switch

between displaying the built-in tutorials or your programs. If you don’t have

any program created yet, the second list will be empty.

We’re now ready to start our code projects!

- 14 -

Level 1 - First Steps

- 15 -

1.1 - First Shapes

- 16 -

What We’ll Do

In this project we’re going to:

● create simple shapes - circles and squares

● use colours to fill those shapes

Log In

Use your browser to go to codeguppy.com, and log in using the account

you created before.

You should see a page like this:

http://www.openprocessing.org/

- 17 -

Create a Program

Start a new program by clicking on Code Now.

You should see a page that looks like this:

We’re going to write our own code on this page.

- 18 -

Our First Circle

Let’s draw a circle. Write this code in the editor part.

circle(300, 300, 200);

Don’t forget the semicolon ; at the end.

The code should look like this now:

To run our code click the “Play” button at the top of your code window.

- 19 -

You should see something like this (note: if your screen resolution cannot

accommodate both the code and the output at the same time, you’ll be

presented with just one of them at a time):

That’s a nice circle. You’ve just written your first code!

- 20 -

Different Colours

Let’s change the colour of our circle.

To go back to the code click on the square “Stop” button.

You’ll be taken back to the code you’re working on.

Add the fill instruction to the code, just before the circle instruction, like

this:

fill('red');

circle(300, 300, 200);

Can you guess what this new code does?

Most code instructions have names that give us a good clue about what

they do. The circle instruction ... draws a circle. The fill instruction … picks

a colour to fill a shape.

- 21 -

Run the code to see what happens.

You should see a red circle.

Try It Yourself

Have a go at choosing different colours to fill the circle.

I changed my code to draw a pink circle.

fill('pink');

circle(300, 300, 200);

You can choose colours like blue, green, black, white, grey, violet, .. and

many more.

You can find a full list of colours by opening the “Backgrounds -> Colors”

palette from the left toolbar of codeguppy.com coding environment.

- 22 -

Drawing Squares

Let’s try drawing a different shape now. Have a look at the code below:

fill('red');

square(300, 300, 200);

What shape do you think this will draw?

Change your code so that it has that square instruction instead of the

circle instruction.

If we run the code we should get a red square.

- 23 -

Try It Yourself

We can change the colour of our square just like we changed the colour of

our circle.

I changed my code to draw a blue square.

fill('blue');

square(300, 300, 200);

This is what happens when I run the code:

Try changing the colour yourself. Can you make a green square?

- 24 -

Square and Circle Together

Let’s try something exciting and write the code for a square and a circle

together!

Look at this bit of code. You can see we’ve written instructions for a square

and a circle.

fill('red');

square(300, 300, 200);

circle(300, 300, 200);

Change your code so it draws both shapes. If we run the code, we get a

picture with both shapes!

This shows we can use lots of drawing instructions to make a more

interesting picture.

- 25 -

Try It Yourself

Write this code that draws four red circles:

fill('red');

circle(300, 300, 200);

circle(300, 300, 150);

circle(300, 300, 100);

circle(300, 300, 50);

Did you notice the last numbers in the brackets are not the same?

This is what happens when we run the code:

Can you work out what those last numbers do?

- 26 -

Try changing those numbers to different ones. Run your code to see what

happens.

Now try changing all the numbers, like this example:

fill('red');

circle(400, 300, 200);

circle(200, 200, 150);

circle(150, 400, 100);

circle(300, 300, 50);

Make sure you choose your own numbers. Run your code to see what

happens.

This is what my code makes:

- 27 -

Let’s try one more idea. Change the colour of each circle by using more fill

instructions.

Here is my example:

fill('yellow');

circle(400, 300, 200);

fill('green');

circle(200, 200, 150);

fill('blue');

circle(150, 400, 100);

fill('red');

circle(300, 300, 50);

This is what my code makes. Your own code will draw a different picture.

- 28 -

Experiment by adding even more fill and circle instructions.

Try adding square instructions too.

- 29 -

1.2 - Coordinates & Size

- 30 -

What We’ll Do

In this project we’re going to:

● use coordinates to put shapes on a canvas

● learn how to choose the size of a shape

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program by clicking the “CODE NOW” button.

Your code window should look like this:

- 31 -

Those Circles Again

In the last project we wrote some code to draw a circle.

Type the same code into the empty draw part.

circle(300, 300, 200);

Run the code by clicking the play button at the top.

You should see something like this:

It’s the same picture we had before.

Now add another circle instruction just before the one we already have.

This time change the first number from 300 to 200 like this:

- 32 -

circle(200, 300, 200);

circle(300, 300, 200);

Run the code to see what happens.

Can you work out why this happens?

Add more circle instructions after the one we already have, and change the

numbers like this:

circle(200, 300, 200);

circle(300, 300, 200);

circle(400, 300, 200);

circle(500, 300, 200);

Run the code again.

- 33 -

We have four circle instructions, and the only difference is the first number.

Can you work out what that number does?

- 34 -

Coordinates on a Canvas

When we write code to draw shapes, they are drawn on a canvas.

A canvas is just like a piece of paper.

If we ask our computer to draw a circle, it needs to know exactly where to

draw it.

The next picture shows a circle with a pin exactly on the middle of the

circle.

- 35 -

If we wanted to move the circle, we would choose a new point on the

canvas to pin the centre of the circle to.

How do we tell our computer exactly which point on the canvas we mean?

We use coordinates. You may remember coordinates from school.

- 36 -

Look at these examples of coordinates.

The red square is at (3, 2). That’s because it is 3 along and 2 down.

The green square is at (6, 3) because it is 6 along and 3 down.

Our canvas is bigger than that small grid. It is 800 pixels wide, and 600

pixels down.

If we wanted to put a circle in the middle, where would we pin the centre of

the circle?

- 37 -

You can see the centre of the circle would be 400 across and 300 down.

We can write that as (400,300).

The code to draw a circle in the middle of the canvas is:

circle(400, 300, 200);

You can see that:

● the first number 400 is how far along the circle centre is.

● the second number 300 is how far down the circle centre is.

Try the code yourself.

- 38 -

Your drawing should look like this:

- 39 -

Try It Yourself

Have a look at this picture.

You can see that there are three circles:

● the middle circle is at (400, 300) just like before

● the left circle is at (200, 300)

● the right circle is at (600, 300)

Try writing some code that draws these three circles.

- 40 -

After you’ve done that, see if you can write code that draws circles that go

down the canvas like this:

Remember the second number is how far up or down the circle is on the

canvas.

Here’s how I did it.

circle(200, 200, 100);

circle(400, 300, 100);

circle(600, 400, 100);

- 41 -

- 42 -

Circle Size

We just learned how to draw a circle at different places on the canvas.

It would be good if we could change the size too. Let’s do that now.

Have a look at this picture:

We can see three circles. A small one, a medium one and a large one.

A good way to describe the size of the circle is the radius. That’s the

distance from the center of circle to margin.

- 43 -

Let’s look at some very simple code again.

circle(400, 300, 100);

We’ve seen this code before. It draws a circle in the middle of the canvas.

The middle of the circle is exactly at (400, 300).

Here is the drawing that code makes.

We haven’t talked about the last number, 100.

- 44 -

Change the 100 to 200 to see what happens.

circle(400, 300, 200);

What do you get?

You should get a much larger circle.

What happens if you choose a smaller number like 30?

That third number is the size of the circle. A large number draws a larger

circle. A small number draws a small circle.

- 45 -

Try It Yourself

We’ve learned how to draw a circle exactly where we want on the canvas.

We’ve also learned how to set the size of the circle.

In the last project, we learned how to choose a colour for the circle.

See if you can combine what you’ve learned to make a picture with about

five circles. Give the circles a different colour, size and location.

Here’s what I made. Your code will make a different picture.

- 46 -

Don’t Forget Squares

We’ve learned how to draw a circle exactly where we want, and the size

we want.

Can we do the same with squares? Yes we can!

Look at this code for drawing a square:

square(300, 200, 100);

Can you guess what the numbers are for?

This next picture explains what the numbers do.

- 47 -

The first number 300 sets how far along the square is.

The second number 200 sets how far down the square is.

That means the top left corner of the square is at (300, 200).

The third number 100 sets the size of the square.

Try that code to check you get a square.

- 48 -

Challenge!

Can you write code code that creates a drawing like this?

This is a challenge that might take some experimenting to get right.

Using a pen and paper to plan the coordinates and sizes can be helpful.

- 49 -

1.3 - Random Numbers

- 50 -

What We’ll Do

In this project we’re going to:

● get our computer to pick random numbers for us

Start a New Program

Log in to codeguppy.com if you haven’t already.

Your code window should look like this:

- 51 -

Rings & Circles

Have a look at this code. Can you work out what it does?

circle(400, 300, 200);

circle(400, 300, 150);

circle(400, 300, 100);

circle(400, 300, 50);

There are four circles, and all of them are located in the middle of the

canvas.

The difference between these circles is their radius.

Run the code. You should see these four white circles.

Let’s make those circles see-through, so they don’t have any colour.

- 52 -

We can do this using a noFill instruction before the circle instructions.

noFill();

circle(400, 300, 200);

circle(400, 300, 150);

circle(400, 300, 100);

circle(400, 300, 50);

Make sure you spell noFill correctly. The F is a capital letter.

Run the code to see what happens.

Those circles are completely see-through now! This is not evident now but

in the future when we’ll change the background color you’ll notice this

effect.

- 53 -

You might think those circles are a bit boring. Let’s change their colour.

We can set the outline colour of a shape with the stroke instruction. You

can see here we’ve set the outline to blue.

noFill();

stroke('blue');

circle(400, 300, 200);

circle(400, 300, 150);

circle(400, 300, 100);

circle(400, 300, 50);

Run the code to see it working. You should get blue rings like this.

- 54 -

Try It Yourself

Try choosing different colours for the rings.

Also, try changing the sizes of the four circles.

Here’s my code:

I chose green for the circle outlines, and radiuses of 200, 175, 60 and 50.

- 55 -

Random Sizes

Sometimes it’s fun to get our computers to choose things for us.

Why don’t we get our computer to choose the sizes of our four circles.

Look at this code:

circle(400, 300, 200);

We already know this code draws a circle of radius 200.

Now look at this code:

circle(400, 300, randomNumber(200));

What’s changed?

We’ve replaced the size number 200 by randomNumber(200).

The instruction randomNumber(200) asks our computer to pick a number

between 0 and 200.

The number could be 12, or 102, or 399, or 37 or 256, … or something

else.

We don’t know what the computer will choose. All we know is that the

number will not be bigger than 200.

- 56 -

Let’s change our code so that all four circles now use randomNumber to

pick a random size.

noFill();

stroke('blue');

circle(400, 300, randomNumber(200));

circle(400, 300, randomNumber(200));

circle(400, 300, randomNumber(200));

circle(400, 300, randomNumber(200));

Try it to see what you get.

This is what I get.

- 57 -

Your picture will be different because the sizes your computer chooses will

be different.

Run your code again using the Stop and Play buttons at the top of the

page.

Do you see a different picture? Why is that?

Try replaying your code several times.

- 58 -

Random Colours

Let’s get our computer to choose colours, not just numbers.

Have a look at this code:

fill('orange');

circle(400, 300, 300);

fill('yellow');

circle(400, 300, 200);

Run the code and you’ll see it draws a smaller yellow circle on a larger

orange circle.

Wouldn’t it be cool if our computer picked a colour all by itself for the

smaller circle?

- 59 -

To do this we need a list of colours to choose from.

To code a list of things we put them between square brackets [].

Here is a list of three colours:

['red', 'purple', 'green']

You can see the colours are between square brackets []. You can also see

there are commas between each colour.

To pick something from a list at random, we use the random instruction.

Look at the code below.

fill('orange');

circle(400, 300, 300);

fill(random(['red', 'purple', 'green']));

circle(400, 300, 200);

Instead of ‘yellow’, we use the random instruction to pick one of red,

purple or green.

We don’t know which colour will be chosen, because the choice will be

random.

Run the code to see what you get.

- 60 -

Here’s what I get:

Run the code again a few times. Can you get all of the colours?

- 61 -

Try It Yourself

Change the list so it only has colours you like.

You can make it longer than three colours if you want.

Can you change the code so that both circles have colours chosen at

random?

Here’s what my code created:

- 62 -

- 63 -

Challenge!

Use what you’ve learned to draw four circles where:

● the location is a random place on the canvas

● the size is a random number

● the colour is randomly chosen from a list of colours

Here’s what my code created:

- 64 -

1.4 - Simple Variables

- 65 -

What We’ll Do

In this project we’re going to:

● learn how variables can remember numbers

● see how variables can be useful

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program by clicking the “CODE NOW” button.

- 66 -

Three Circles

Let’s start the new program with three simple circles.

circle(200, 200, 25);

circle(200, 250, 25);

circle(200, 300, 25);

Can you see the difference between these three circles?

The x-coordinate stays the same at 200.

The y-coordinate starts at 200 and increases by 50 for each new circle.

Run the code to see what happens.

- 67 -

Cool! The three circles look a chain.

They’re in a vertical line because only the y-coordinate changes.

- 68 -

Move The Chain

Let’s move the chain to another place on the canvas.

Here is some code to draw the circles near the middle of the canvas.

circle(400, 300, 25);

circle(400, 350, 25);

circle(400, 400, 25);

What’s changed?

The x-coordinate is now 400. It was 200 before. That means the circles will

be drawn further to the right.

The y-coordinate now starts at 300, and grows to 350 and then 400. It goes

up by 50 every time.

This means we should still get a nice vertical line of circles, just like before.

Try the code to check it does what you expect.

- 69 -

That worked because we changed the location of all the circles, making

sure they stayed in a line.

That’s cool, but it would be more exciting to draw the chain at a random

place on the canvas.

- 70 -

Draw The Chain at Random Places

How would we draw the line of circles at a random place?

We’ve already used the randomNumber instruction to choose a random

location on the canvas.

Have a look at this code. It uses randomNumber to pick numbers for the x

and y coordinates.

circle(random(800), randomNumber(600), 25);

circle(random(800), randomNumber(600), 25);

circle(random(800), randomNumber(600), 25);

Run the code to check it works.

That code didn’t do what we wanted. Can you see why?

- 71 -

It doesn’t work because all of the circles are drawn at random locations.

Our earlier code didn’t do that.

Look again at that earlier code:

circle(400, 300, 25);

circle(400, 350, 25);

circle(400, 400, 25);

We can see that the x-coordinates are not totally random. They are kept

the same for all the circles.

We can also see that the y-coordinates are not totally random. They

increase in steps of 50 from the first circle.

That means we need to pick a random location only for the first circle.

We also need to remember that location so we can draw the other two

circles next to it.

We can ask our computer to remember a number by using a variable.

We’ll talk about variables next.

- 72 -

Variables are like boxes that we can put numbers in. The picture above

shows a variable called x. You can see we’re putting the number 10 inside

it.

Whenever we use x in our code, our computer will look inside the box and

use the number 10.

Have a look at this new code. Can you work out what is does?

var x = randomNumber(800);

var y = randomNumber(600);

circle(x, y, 25);

circle(x, y + 50, 25);

circle(x, y + 100, 25);

We’re creating a new variable x and putting a random number between 0

and 800 inside it. We can’t guess what number it will be. We only know it

will be between 0 and 800.

We’re creating another variable called y, and putting a random number

between 0 and 600 inside it.

- 73 -

What do you think the first circle command circle(x, y, 25) will do?

What do you think the second circle command circle(x, y + 50, 25) will do?

Try the code yourself, and see what happens.

You should get a chain of three circles, somewhere on the canvas.

The first circle(x, y, 25) instruction uses the random numbers that were put

inside the x and y variables.

The next circle(x, y + 50, 25) instruction also uses the same numbers that

were put inside x and y.

Run the code again.

- 74 -

The chain of circles will be at a different place. That’s because the location

of the first circle is chosen at random.

Well done for getting this far!

- 75 -

Try It Yourself

Try changing the circle instructions to add different numbers to the

variables.

Here I’ve changed the second circle to use y + 100. The third circle uses y

+ 200.

circle(x, y, 25);

circle(x, y + 100, 25);

circle(x, y + 200, 25);

Here’s what my changed code draws.

- 76 -

Challenge!

Have a look at this drawing.

There are five circles arranged like flower. There is one circle in the middle,

and four circles around it.

Can you write code that draws that flower pattern at a randomly chosen

place on the canvas?

You can use a pen and paper to help plan your code.

Some of the best coders use a pen and paper to plan their code!

- 77 -

Level 2 - Progressing

- 78 -

- 79 -

2.1 - Simple Functions

- 80 -

What We’ll Do

In this project we’re going to:

● learn how to package useful code as a function

● see how functions can be useful

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program by clicking the big “CODE NOW” button.

- 81 -

A Flower Made Of Circles

In the last project we learned to use variables to draw a group of shapes at

any location on the canvas.

Have a look at this picture showing a flower made of circles.

Where is the centre of the yellow circle? You can see from the picture it is

at (x, y). We’re using letters instead of numbers.

Where is the bottom red circle? It is a bit further down from the yellow

circle. Looking at the picture, you can see it is at (x, y + 50).

- 82 -

If the centre of the yellow circle is at (x, y) then we can work out the centres

of all the red circles:

● the top red circle is at (x, y - 50)

● the bottom red circle is at (x, y + 50)

● the right red circle is at (x + 50, y)

● the left red circle is at (x - 50, y)

If we set x to 100 and y to 100, then the flower should be drawn near the

top left of the canvas, just like before.

If we set x to 400 and y to 300, then the flower should be drawn in the

middle of the canvas.

We can set x and y to any location on the canvas, and the flower will be

drawn there.

Here is some code to draw that flower at (x, y).

var x = 400;

var y = 300;

fill('yellow');

circle(x, y, 50);

fill('red');

circle(x, y - 50, 25);

circle(x + 50, y, 25);

circle(x, y + 50, 25);

circle(x - 50, y, 25);

At the beginning of the code we set x to 400, and y to 300.

- 83 -

You can see the instructions for the yellow and red circles use x and y

instead of numbers.

When our computer sees the x in circle(x, y, 50) it will take the number

inside the variable x and use that. The same will happen for y.

So circle(x, y, 50) will become circle(400, 300, 50).

Run the code to check it draws the flower in the middle of the canvas at

(400,300).

Great - that worked!

- 84 -

Draw The Flower At A Random Place

Let’s change the code to draw the flower at a random place on the canvas.

We only need to change the numbers that x and y are set to.

Instead of us choosing a number, we let our computer pick one for us.

var x = randomNumber(800);

var y = randomNumber(600);

Run the code to check the flower is drawn somewhere else.

Your drawing will be different because your computer will choose a

different random location.

- 85 -

Draw Lots of Flowers

Let’s do something new and exciting - let’s draw 5 flowers!

How do we draw 5 flowers? We could write all that code again 5 times, but

that would be really long and boring.

It would be better if we taught our computer to draw a flower just once, and

then asked it to draw a flower lots of times.

It would be like a recipe for chocolate cake. We write it down once, and use

it lots of times.

We can write recipes in code too. They’re called functions.

Have a look at this code.

function my_flower()

{

 var x = randomNumber(800);

 var y = randomNumber(600);

 fill('yellow');

 circle(x, y, 50);

 fill('red');

 circle(x, y - 50, 25);

 circle(x + 50, y, 25);

 circle(x, y + 50, 25);

 circle(x - 50, y, 25);

}

- 86 -

If you look carefully, you’ll see it is the same code we already wrote to draw

a flower at a random place on the canvas.

The only difference is that we have

function my_flower()

{

at the top, and

} at the bottom.

What this new code does is create a recipe, or function, called my_flower.

The recipe instructions are inside the curly brackets { and }.

Write this code to create the my_flower function.

If you run this code you will get an empty canvas.

- 87 -

That’s because we’ve created the my_flower recipe, but we haven’t used it

yet.

To use it, we simply write the name of the function my_flower outside of

the function.

 my_flower();

Don’t forget the empty round brackets () after the name of the function.

Run the code to check that using our new my_flower instruction really

does work.

My flower is falling off the edge of the canvas. Yours will be somewhere

else on the canvas.

- 88 -

What do you think will happen if we write five my_flower instructions one

after the other?

 my_flower();

 my_flower();

 my_flower();

 my_flower();

 my_flower();

Try it.

- 89 -

How cool is that!

Our code has drawn 5 flowers, just like we wanted.

The really cool thing is that we didn’t need to write out all the circle

instructions lots of times. There are 25 circles in that drawing so we saved

a lot of typing!

- 90 -

- 91 -

Try it Yourself

Try changing your code to draw 10 flowers.

It’s getting busy!

That drawing has 50 circles. We’ve saved a lot of typing by using a

function to draw each flower.

Challenge!

Change the my_flower function to draw flowers with a petal colour chosen

at random from a list of colours.

- 92 -

2.2 - Repeating Things

- 93 -

What We’ll Do

In this project we’re going to:

● learn how to repeat instructions

● see how repetition can do lots of work without typing lots of code

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program by clicking on the main “CODE NOW” button.

Start With A Simple Function

Let’s start this project with a really simple function that draws a small circle

filled with a colour chosen randomly from a list.

Have a look at this code. We’ll talk about it below.

function bubble()

{

 var x = randomNumber(200, 600);

 var y = randomNumber(200, 400);

 var r = randomNumber(15, 50);

 fill(random(['pink', 'yellow', 'lightgreen']));

 circle(x, y, r);

}

- 94 -

We’ve called the function bubble, because the coloured circles should look

like bubbles.

You can see we’ve picked random numbers for x and y. These will be the

location of the circle.

Did you spot that randomNumber instruction has two numbers inside its

brackets? Before it only had one. The instruction now picks a random

number that is between those two numbers. So randomNumber(200, 600)

picks a number between 200 and 600.

You can also see that r is set to a random number between 15 and 50. This

will be the radius of the circle.

We’re also choosing a random colour from a list of pink, yellow and

lightgreen.

Let’s call this bubble function five times. Calling a function is what coders

say when they’re using a function.

Run the code to see five coloured bubbles.

- 95 -

Those bubbles look like sweets!

We haven’t don’t anything very new yet. That’s next.

- 96 -

Draw 20 Bubbles

That drawing needs more bubbles. Let’s draw 20.

We could repeat the bubble instruction 20 times, but that would get tiring.

There must be a better way.

There is a better way!

Computers are really good at repeating things, and they don’t get bored.

Have a look at this new code:

repeat(20, bubble);

Can you guess what it does?

The repeat instruction repeats a function. We tell it what function to repeat.

Here, we’ve told it to repeat the bubble function.

That number 20, tells repeat to call the bubble function 20 times.

Replace your five calls to bubble with this single repeat instruction.

- 97 -

Very cool!

That repeat instruction is really simple, but you can see it is powerful.

- 98 -

Try It Yourself

Change your code to draw 200 bubbles. Yes, 200!

I changed the bubble function to make the bubbles smaller. I also

increased the range of numbers that x and y are chosen from, so more of

the canvas is used for drawing on.

 var x = randomNumber(100, 700);

 var y = randomNumber(100, 500);

 var size = randomNumber(10, 25);

Here’s what my code draws.

- 99 -

- 100 -

Challenge!

Have a look at this drawing.

If you look closely you can see it is made of lots of small blobs.

There are 200 blobs, but you don’t have to count them!

Each blob has a small yellow circle on top of a red, green or blue larger

circle.

Can you write code to make a similar drawing?

- 101 -

2.3 - More Functions

- 102 -

What We’ll Do

In this project we’re going to:

● learn how to pass information to functions

● see how this makes functions even more useful

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program by clicking on the big “CODE NOW” button.

- 103 -

Drawing Flowers Where We Want

We’ve already learned how to write a function - code we can use again

and again.

Here is the function my_flower we wrote to draw a flower.

function my_flower()

{

 var x = randomNumber(800);

 var y = randomNumber(600);

 fill('yellow');

 circle(x, y, 500);

 fill('red');

 circle(x, y - 50, 25);

 circle(x + 50, y, 25);

 circle(x, y + 50, 25);

 circle(x - 50, y, 25);

}

We don’t know where it will draw a flower. That’s because the centre of the

flower (x, y) is chosen at random.

It would be good if we could tell our function exactly where to draw the

flower.

That means we need a way to tell our my_flower function what x and y

should be.

Have a look at this new code. It is the same as before but with some small

changes. Can you spot the differences?

- 104 -

function my_flower(x,y)

{

 fill('yellow');

 circle(x, y, 50);

 fill('red');

 circle(x, y - 50, 25);

 circle(x + 50, y, 25);

 circle(x, y + 50, 25);

 circle(x - 50, y, 25);

}

There are two differences:

● the name of the function now has (x, y) in brackets.

● we removed the code to choose x and y at random.

Changing the name from my_flower() to my_flower(x, y) means the

function now needs to be told what x and y to use.

- 105 -

Here is how we tell my_flower what we want x and y to be:

my_flower(100, 200);

This calls my_flower, just like before, but passes the number 100 to the

function to be used as x. It also passes 200 to be used as y.

Let’s try it!

Here is what my code looks like and the result, a flower drawn at (100,

200).

Great!

We’ve told the function where to draw the flower by passing information to

it. This is called passing parameters.

- 106 -

The word parameters means the information you give to a function when

you use it.

We can say the function my_flower(x, y) takes 2 parameters, x and y.

- 107 -

Try It Yourself

Try your new my_flower(x, y) function with different parameters.

Try drawing several flowers with different parameters for each one. See if

you can make a pattern of flowers.

Here is a pattern I made.

- 108 -

Now see if you can change the code so that your my_flower function takes

an extra parameter, a colour. Use this colour for the flower petals.

Test your new my_flower function by drawing different coloured flowers.

Here’s my code, showing the extra colour parameter passed to my_flower:

my_flower(200, 300, 'purple');

my_flower(600, 300, 'purple');

my_flower(400, 100, 'blue');

my_flower(400, 500, 'blue');

my_flower(400, 300, 'red');

And here is the pattern it makes.

- 109 -

- 110 -

Challenge!

Change the my_flower function so that it takes a scale parameter. Use

this scale number to draw smaller or larger flowers.

This code shows my_flower being used with a scale parameter of 2.

my_flower(200, 300, 'purple', 2);

Let a scale of 1 draw flowers with a middle circle of size 50 and petals of

size 25, just like before.

A scale of 0.5 would draw a smaller flower half the size of the original. It

would have a middle circle of radius 25 and petals of radius 12.5.

A scale of 2 would draw a larger flower, twice as large as the original.

- 111 -

2.4 - Mixing Colours

- 112 -

What We’ll Do

In this project we’re going to:

● learn how to mix our own colours

● see how we can calculate colours

Start a New Program

Log in to codeguppy.com if you haven’t already and create a new program.

Your code window should look like this:

- 113 -

Mixing Colours

We’ve already chosen colours by using names like pink and orange.

We will now learn to mix our own colours. This is just like mixing paint to

get the colour we want.

Mixing red, green and blue light is how we see colours on our television,

laptop and smartphone screens.

You might have mixed red, green and blue to choose a colour in your

favourite photo editing software.

Try the mixer at https://www.w3schools.com/colors/colors_rgb.asp

https://www.w3schools.com/colors/colors_rgb.asp

- 114 -

You can make yellow by mixing red and green.

See if you can make orange and pink.

Look again at the mixer above. You can see the red, green and blue levels

go from 0 all the way up to 255.

That yellow is made of:

● red 255

● green 255

● blue 0

The red and green are turned up full, and the blue is turned off completely.

- 115 -

We know this code will draw a yellow circle.

fill('yellow');

circle(400, 300, 200);

Let’s pick that same yellow using the red, green and blue levels.

fill(255, 255, 0);

circle(400, 300, 200);

Running this code gives us a yellow circle again.

- 116 -

Try It Yourself

Try mixing different levels of red, green and blue to change the colour of

the circle.

Remember to keep the levels between 0 and 255.

Here is a nice blue I found.

The RGB levels for this blue are (51, 153, 255).

RGB is short for red, green and blue.

- 117 -

- 118 -

Mixing Random Colours

The RGB levels for any colour are numbers from 0 up to 255.

What if we chose those numbers at random?

That would mean mixing random amounts of red, green and blue light to

make a colour.

Let’s try it.

var r = randomNumber(0, 255);

var g = randomNumber(0, 255);

var b = randomNumber(0, 255);

fill(r, g, b);

circle(400, 300, 200);

You can see we’re setting the variables r, g and b to be random numbers

between 0 and 255.

We’re using those numbers in the fill() instruction to set a colour. That

colour will be used to fill the circle we draw.

- 119 -

We don’t know what colour the circle will be because it will be mixed from

random RGB levels.

Here’s what I get if I run the code.

What colour do you get? Run your code again to get a different colour.

- 120 -

Lots of Colours

Let’s write a function to draw a circle of radius 50 at a random place on the

canvas.

We’ll use our code from before to give it a random colour.

We’ll also use the repeat() instruction to call this function 50 times, to draw

50 circles.

Here’s some code that does this.

repeat(50, balloon);

function balloon()

{

 var r = randomNumber(0, 255);

 var g = randomNumber(0, 255);

 var b = randomNumber(0, 255);

 var x = randomNumber(100, 700);

 var y = randomNumber(100, 500);

 fill(r, g, b);

 circle(x, y, 50);

}

I’ve called the function balloon.

You can see that we choose random numbers between 0 and 255 for the

red, green and blue light.

Here’s what my code makes.

- 121 -

When you run it, the code will draw a different pattern with different colours.

Do you think they look like balloons?

- 122 -

Try It Yourself

We’ve been making colours by mixing random levels of red, green and

blue. Those levels were a number between 0 and 255.

What if we chose the RGB levels from a different range?

var r = randomNumber(100, 255);

var g = randomNumber(100, 255);

var b = randomNumber(0, 10);

The red and green levels are chosen to be between 100 and 255. The

blue level is chosen to be between 0 and 10.

Lovely autumn colours!

Let’s try some different ranges.

- 123 -

var r = 0;

var g = randomNumber(100, 255);

var b = randomNumber(100, 255);

This time the red level is set to always be 0. The green and blue levels

can be between 100 and 255.

The result is a nice set of greens and blues that remind me of the sea.

Try your own ranges.

- 124 -

Challenge!

The picture below is made with a function that draws a circle at a random

place on the canvas.

The (x, y) coordinates of each circle are used to calculate the red, green

and blue levels of that circle’s colour.

● The red and green levels are the y coordinate divided by 2.

● The blue level is a random number between 100 and 255.

Write your own code to do this. Try your own colour calculations too.

- 125 -

2.5 - More Loops

- 126 -

What We’ll Do

In this project we’re going to:

● learn about loop counters

● see how loop counters can be useful as function parameters

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program, just like we did in the first project.

- 127 -

Lots of Balloons

Have a look at this picture of four small balloons.

The code that made this drawing is simple.

circle(100, 300, 25);

circle(150, 300, 25);

circle(200, 300, 25);

circle(250, 300, 25);

Can you see what changes between each circle instruction?

The x coordinate is 100 for the first circle. For the second circle it is 150. It

keeps getting bigger by 50 until it reaches 250 for the fourth circle.

- 128 -

What if we wanted to draw 13 balloons? We could write out 13 circle

instructions.

That would be a lot of typing and very boring. There must be a better way!

Could the repeat instruction help us avoid lots of typing?

repeat(13, balloon);

It’s a good idea - but this code won’t work because the balloon function

won’t know where to draw each circle.

If repeat could pass information to balloon that would really help - it could

tell the balloon function where to draw each circle.

- 129 -

Repeat With Extra Powers!

Have a look at this code showing a new way to use repeat:

repeat(100, 700, 50, balloon);

Here, the repeat instruction keeps a counter. This loop counter starts at

100, and goes all the way up to 700, increasing by 50 each time.

The balloon function is passed the counter as a parameter.

So the repeat instruction calls balloon(100), then balloon(150), then

balloon(200), balloon(250), .. all the way up to balloon(700).

That’s really useful because the balloon function can use the number as

the x coordinate of the circle.

The next picture shows this idea.

- 130 -

We do need to write our balloon function to accept a single parameter.

function balloon(x) {

 circle(x, 300, 25);

}

You can see the balloon function takes one parameter, which we’ve

named x. The function draws a circle at coordinates (x, 300), with radius

25.

Here’s what my code looks like.

repeat(100, 700, 50, balloon);

function balloon(x) {

 circle(x, 300, 25);

}

You can see the balloon(x) function is really simple. It only contains one

circle instruction.

Outside the function, there is just one repeat instruction.

- 131 -

Here are the results.

That worked!

That was a small amount of code to create these 13 balloons.

Passing information to repeated code like this is a really powerful idea. It is

used almost everywhere - making games, digital art, electronic music,

controlling robots, and apps for your smartphone too.

It’s a good thing to learn and practice!

- 132 -

- 133 -

Try It Yourself

Let’s try using the balloon(x) function’s parameter x to decide the size of

the circle.

Here is my own experiment:

circle(x, 300, x/20);

The results are interesting.

The circle radius is coded as x/20. As x goes from 100 to 700, the circle

size goes from 5 up to 35.

Try your own ideas for calculating the circle radius from x.

Why not use that parameter to calculate a colour for the balloon?

- 134 -

Here’s what I tried.

function balloon(x) {

 fill(x/2, x/4, 128);

 circle(x, 300, x/20);

}

The colour is mixed with a red level of x/2, a green level of x/4, and a blue

level set to 128.

The results are rather cool!

Have a go yourself.

- 135 -

Challenge!

Have a look at this picture.

Each ring is drawn by a function, which we can call ring.

A repeat instruction with a loop counter is used to tell the ring function how

big the ring should be, and also what colour it should be.

See if you can write code that creates a similar picture.

- 136 -

2.6 - Artistic Maths

- 137 -

What We’ll Do

In this project we’re going to:

● learn about a simple maths function - the sine wave

● see how it can help make interesting patterns

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program, just like we did in the first project.

Your code should look like this:

- 138 -

Drawing Maths Functions

In school we sometimes work with maths functions like this one:

If x is 1, then y is 4.

If x is 2, then y is 5.

Easy!

This table shows y as x goes from 0 to 5.

x y

0 3

1 4

2 5

3 6

4 7

5 8

If we draw dots at all these (x, y) we might see a pattern.

Let’s try it.

- 139 -

Have a look at this code. None of it is new, but we’ll talk about it below.

Let’s look at the my_maths_function first.

function my_maths_function(x) {

 var y = x + 3;

 circle(x, y, 5);

}

It takes a parameter x and uses it to calculate x + 3. The answer is put into

a variable y.

A small circle is then drawn at (x, y).

So my_maths_function is doing what y = x + 3 is doing.

We want to pass my_maths_function different values of x.

- 140 -

We can use the repeat instruction to start a counter at 0, and keep

increasing it by 10, until it gets to 800. These can be all the values of x

passed to my_maths_function.

repeat(0, 800, 10, my_maths_function);

Run the code to see what pattern those circles make.

As x gets bigger and moves to the right, y also gets bigger and moves

down the canvas. That’s why there’s a line of dots moving to the right and

down.

That pattern is a bit boring!

- 141 -

Let’s try a different maths function to see if it makes a more interesting

pattern.

This time x is divided by 20 and the answer is squared.

Only one line of code needs to change in my_maths_function.

var y = sq(x / 20);

Try it yourself to see what pattern this makes.

That’s a bit more interesting.

- 142 -

The path looks like a ball thrown from a wall. It starts falling slowly, and

then speeds up.

Let’s try one more mathematical function.

That sin is short for sine. You might have seen it in your maths class.

Don’t worry if you haven’t seen it before, we’re just going to use it for fun,

not work!

Change your my_maths_function like this:

var y = sin(x);

Run your code to see what pattern this sine function makes.

- 143 -

What happened?

If you look closely, you can see there’s something happening at the top of

the canvas.

Maybe the pattern is really short?

We can make the pattern taller by multiplying the sin(x) by 50.

var y = 50 * sin(x);

Let’s also shift the pattern down so that when y is 0, the dots are drawn in

the middle of the canvas. This is easy to do. We just add 300 to the y

coordinate when we draw the circles.

circle(x, 300 + y, 5);

Your code and output should look like this.

- 144 -

How cool is that!

The sine function isn’t boring at all.

- 145 -

Try It Yourself

Have a look at the my_maths_function code again.

var y = 50 * sin(x);

Try changing the number 50 which makes the sine function taller. Also try

multiplying x by a different number to make it bigger.

Here is my own experiment.

I’ve multiplied x by 3, and made the sine taller by multiplying it by 200.

var y = 200 * sin(x * 3);

- 146 -

I’ve also changed the repeat instruction so that the counter grows by 1.

repeat(0, 800, 1, my_maths_function);

Because that means more circles, I’ve made them a smaller size 3.

- 147 -

Sine Waves For Shape Sizes

Let’s use sine waves to decide the size of shapes.

Have a look at this my_maths_function code.

var size = 100 * sin(x);

rectangle(x, 300, 5, size);

We know sin(x) goes up and down like a wave. Multiplying it by 100 makes

the wave taller. We’ve put this number in a variable called size.

We then draw a rectangle at (x, 300), which is along the middle of the

canvas. It has a width of 5, and a height of size.

Your code and output should look like this:

- 148 -

That is a cool pattern!

Why do the rectangles go above and below the half-way line?

It’s because sine waves go above and below zero. These positive and

negative values mean the rectangle heights become positive and negative

too.

You can see a sine wave going up and down between -1 to +1 here:

● https://www.desmos.com/calculator/hyimynd5yr

https://www.desmos.com/calculator/hyimynd5yr

- 149 -

Try It Yourself

Try different sine functions for deciding the size of the rectangles.

You might want try using two sine functions together. You could add them

together. You might even try multiplying them together.

Here is my own experiment:

var size = 100 * sin(x * 3) * sin(x * 0.5);

I’ve multiplied two different sine functions together.

And this is what it makes.

Funky!

- 150 -

Sine Waves Can Mix Colours

Let’s use sine waves to mix colours.

Have a look at this code:

var r = 255 * sq(sin(x));

var g = 0;

var b = 128;

fill(r, g, b);

The green part is set to 0, and blue part set to 128.

The red part depends on what x is.

We know sin(x) goes up and down like a wave. The code squares that

number and then multiplies the answer by 255. That becomes the red part

of the colour we’re mixing.

Why have we squared the sine function? This picture explains why.

- 151 -

The sine wave goes up and down between -1 and +1. If we square the

values, they go from 0 to +1.

This makes it easier to scale the values to RGB levels. We just by

multiplying them by 255.

Let’s use that colour to draw a thin rectangle all the way down the canvas.

rect(x, 0, 10, 600);

- 152 -

Your code and output should look like this:

That is quite nice!

The wavy sine function has mixed a wavy amount of red into the colour of

the thin rectangles.

When the sine value is high, the red level is high, and we get that bright

pink colour.

When the sine value is low, the red level is low, and we get that darker

purple colour.

- 153 -

Try It Yourself

Use your own sine waves to mix colours for those rectangles.

Here is my own experiment:

var r = 255 * sq(sin(x));

var g = 255 * sq(sin(x * 0.1));

var b = 128;

The red part is changing quicker than the green part.

Here’s what my code does. What does yours do?

- 154 -

- 155 -

Challenge!

Can you write code to make this really cool image?

● There are 1800 dots placed at random places on the canvas. You

can use a loop to draw these.

● The size of the dots grows and shrinks with distance from the center.

That means using the sine of the distance.

● The colour is mixed using the distance from the center.

- 156 -

2.7 - More Colour

- 157 -

What We’ll Do

In this project we’re going to:

● learn about mixing colours using the HSB colour model

● see how it can be more useful than the RGB model

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program, just like we did in the first project.

Your code should look like this:

- 158 -

Thinking In RGB Isn’t Easy

Choosing a colour by mixing red, green and blue light is very common.

But it isn’t always the easiest way.

Can you work out the RGB values for yellow in your head?

The answer is (255, 255, 0).

Using these numbers can you work out the RGB values for a light yellow

or a dark yellow?

It’s not easy.

Luckily, different ways of choosing and mixing colours were invented to

make this easier. We’ll look at one next.

- 159 -

A Different Way Of Picking Colours

Have a look at the following picture of a colour wheel.

Around the wheel we can see colours like red, green and blue.

To pick a colour we say how far round the wheel it is.

A good way of doing this is to use the angle. Here are some examples:

● red is at 0 degrees

● orange is at 45 degrees

● green is at 120 degrees

● blue is at 240 degrees

Another word for the colours around the wheel is hue.

What’s the angle for the purple hue?

- 160 -

Let’s write some code to show some colours from the wheel.

We can use a repeat instruction to count from 0 to 360 in steps of 10.

These are the angles that go all the way around the colour wheel.

repeat(0, 360, 10, spot);

These angles can be passed to a function to draw a colored spot. The hue

of the spot will be the one at that angle on the colour wheel.

Have a look at this code for the spot function.

function spot(hue) {

 fill(hue, 100, 100);

 var x = 50 + (hue * 2);

 circle(x, 300, 10);

}

We can see the spot function takes the number passed to it and calls it

hue.

We can also see the fill instruction to pick a colour. It has 3 numbers

passed to it but these are not the usual RGB levels. The first number is the

hue we’ve talked about. We’ll talk about the other two numbers soon.

A circle is drawn along the middle of the canvas, with an x coordinate that

scales hue to fit across the canvas.

- 161 -

Before we run the code, we need to tell our computer that we’re not going

to use the RGB way to pick colours. We’re going to use something called

HSB.

colorMode(HSB);

This instruction needs to go at the beginning of our code.

Your code and output should look like this:

Great!

We can see the hue going from red, through orange, yellow, green, blue,

purple and back to red again.

Picking colours from the wheel is easier than trying to find the right

combination of red, green and blue.

- 162 -

Look at that fill instruction again.

fill(hue, 100, 100);

Let’s talk about those three numbers:

● The first number is the hue on the colour wheel.

● The second number is the saturation. Turning down the saturation is

like adding water to paint. More water makes the colour weaker.

● The last number is the brightness. Turning down the brightness is

like turning down the lights. Things get darker!

Hue values go from 0 to 360. Saturation and brightness values go from 0

to 100.

The letters of HSB come from Hue, Saturation and Brightness.

RGB and HSB are two different colour models. That just means two

different ways of describing colours.

- 163 -

Changing Brightness

Let’s change our code to see what happens if we change the brightness

values.

Lets add a new function to our code that draws circles with brightness set

to 50.

Let’s call it spot_lower_brightness.

function spot_lower_brightness(hue) {

 fill(hue, 100, 50);

 var x = 50 + (hue * 2);

 circle(x, 400, 10);

}

The circles are drawn with a y coordinate of 400, which means they’ll make

a line below the line we had before.

We can use a repeat instruction to call this new function.

repeat(0, 360, 10, spot_lower_brightness);

Let’s see what these circles with lower brightness look like.

- 164 -

This picture makes it really clear that lowering the brightness makes the

colours darker, closer to black.

This is good. If we know that yellow has a hue of 60 degrees, we can

make a dark yellow easily by reducing the brightness value.

That was much harder to do with the RGB colour model.

- 165 -

Changing Saturation

Let’s change our code to see what happens if we change the saturation

values.

Again, let’s create a new function spot_lower_saturation that draws

circles with saturation set to 40.

function spot_lower_saturation(hue) {

 fill(hue, 40, 100);

 var x = 50 + (hue * 2);

 circle(x, 200, 10);

}

The circles are drawn with a y coordinate of 200, which means they’ll form

a line above the original circles.

We can use a repeat instruction to call this new function.

repeat(0, 360, 10, spot_lower_saturation);

Let’s see what these circles with lower saturation look like.

- 166 -

The picture show how lower brightness values make the colours lighter,

closer to white.

Making a light yellow is easy. We just lower the saturation compared to

the normal yellow.

The code for this program is online:

● https://codeguppy.com/code.html?tariq/ex01

https://codeguppy.com/code.html?tariq/ex01

- 167 -

Try It Yourself

The following code draws three circles filled using the HSB values.

fill(240, 100, 100);

circle(400, 300, 300);

fill(240, 60, 100);

circle(400, 300, 200);

fill(240, 20, 100);

circle(400, 300, 100);

I’ve only changed the saturation.

- 168 -

This is what my code draws.

Experiment with your own HSB values.

- 169 -

Calculating Colour Combinations

There’s something else the HSB colour model is good for - calculating nice

colour combinations.

Have a look at the colour yellow on this colour wheel.

The dots near that yellow dot are similar in colour. You can see a yellowy-

orange and a yellowy-green.

If we have a hue value, we can calculate similar colours by choosing new

hue values that are close to the original value.

Let’s try it.

- 170 -

Have a look at the following function we’ve called stripes.

function stripes(x) {

 var hue1 = randomNumber(45, 315);

 var hue0 = hue1 - 15;

 var hue2 = hue1 + 15;

 fill(hue0, 50, 90);

 rect(x, 200, 25, 200);

 fill(hue1, 50, 90);

 rect(x + 25, 200, 25, 200);

 fill(hue2, 50, 90);

 rect(x + 50, 200, 25, 200);

}

The function picks a hue1, randomly chosen to be between 45 and 315

degrees on the colour wheel.

This hue1 is used to calculate two more hue values. hue0 is 15 degrees

less than hue1, and hue2 is 15 degrees more.

These hues are then used to fill rectangles drawn next to each other,

starting at (x, 200). That x is provided to the function as a parameter.

We can use a repeat instruction to count from 100 to 600, going up in

steps of 100, and calling stripes with that counter.

- 171 -

The full code is online at:

● https://codeguppy.com/code.html?tariq/ex02

Let’s see the result.

That’s a rather nice effect.

You can see the three colours in each group are related to each other.

This shows how easy it is to calculate colour combinations with HSB.

You might have seen apps and games using similar colour combinations to

make them look nice.

Change the code to try your own calculations.

https://codeguppy.com/code.html?tariq/ex02

- 172 -

- 173 -

Challenge!

Have a look at the following picture.

The outer circles have randomly chosen hues.

Each inner circle has a colour which is the opposite colour to the outer

circle.

Can you write code to draw similar colour patterns?

- 174 -

You’ll remember from school that opposite colours look the most different

to each other. For example yellow is opposite to blue.

On the colour wheel, opposite colours are on opposite sides of the circle.

Yellow has a hue of 60 degrees. To go to the opposite side of the circle,

we add 180 degrees. That makes 240 degrees, which is blue.

Adding 180 degrees is how you would calculate a hue’s opposite.

Sometimes adding 180 degrees makes the angle larger than 360 degrees.

See if you can work out how to deal with this.

- 175 -

2.8 - Loops Inside Loops

- 176 -

What We’ll Do

In this project we’re going to:

● learn about loops inside loops

● see how these nested loops can be really useful

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program, just like we did in the first project.

Your code should look like this:

- 177 -

From A Line To A Grid

Have a look at this row of dots.

We know how to draw a row of dots using the repeat instruction.

repeat(100, 700, 200, spot);

The function to draw the spot can be really simple.

function spot(x) {

 circle(x, 100, 25);

}

Using a loop saves us from having to write lots of circle instructions.

Now have a look at this grid of spots.

- 178 -

Can we write code to draw this grid of 12 spots without having to write 12

circle instructions?

Can loops help us? Have a think before you continue.

The grid has 3 rows. We could write 3 versions of the spot() function, one

for each row. That would work. But it is still a lot of code to write.

There must be a better way?

There is!

- 179 -

Have a look at this picture.

Along the top you can see the x coordinates 100, 300, 500 and 700.

The code repeat(100, 700, 200, spot) we used to draw a row of spots has

a counter which goes through the same numbers 100, 300, 500 and 700.

The first time round the loop, the counter is 100. We could draw the first

column of spots which all have x as 100.

To draw that column … we could use another loop! The counter for that

loop would count the y coordinates 100, 300 and 500.

Stop and think about what we just said. The first time round the main loop

that goes across the canvas, we want a new loop that goes down the

canvas.

A loop inside a loop!

The second time round the main loop, the counter is 300. We can draw the

column of spots which all have x as 300. The following picture shows this.

- 180 -

To draw the column we can use a loop that counts the y coordinates 100,

300 and 500. That’s the same inner loop as before.

The third time round the main loop, we have the same inner loop again.

We’ve spotted the pattern. The inner loop is always the same every time

we go around the outer loop.

- 181 -

Let’s say that another way.

For every count of the outer loop, we run the same inner loop.

These are called nested loops. The inner loop is nested inside the outer

loop.

The repeat instruction we’ve been using can do nested loops too!

repeat(100, 700, 200, 100, 500, 200, spot);

The first three numbers 100, 700, 200 are the start, end and step size for

the outer loop counter.

The next three numbers 100, 500, 200 are the start, end and step size for

the inner loop counter.

The spot function needs to take both counters as parameters.

function spot(x,y) {

 circle(x, y, 25);

}

You can see the spot function takes the two counters as x and y, and

draws a circle at (x, y).

- 182 -

Our code should look like this:

That’s a tiny amount of code for drawing 12 spots.

That shows how powerful nested loops are.

Run the code to check that it does draw a grid of 12 spots.

- 183 -

That worked.

Now let’s change the code so the loop counters go up in steps of 100, not

200.

repeat(100, 700, 100, 100, 500, 100, spot);

We should get more spots being drawn.

- 184 -

That’s a grid of 35 spots, and the amount of code is still tiny.

Nested loops are very powerful!

- 185 -

Try It Yourself

Experiment with the inner loop and outer loop to see how they they

change the picture that’s drawn.

Here is my own experiment.

repeat(200, 600, 50, 100, 500, 50, spot);

Here’s the result.

That’s 81 spots from a tiny amount of code.

- 186 -

Using Nest Loop Counters

Our spot() function uses the two parameters to draw a circle at (x, y).

Let’s use those parameters in a new way.

Have a look at this code.

function spot(x, y) {

 var hue = ((x + y) / 2) % 360;

 fill(hue, 50, 100);

 circle(x, y, 25);

}

You can see the parameters are used to calculate a hue. The two are

added together and the sum divided by two. The result is divided by 360

and the remainder becomes hue.

You might remember % 360 means the remainder after dividing by 360.

Don’t forget to change the colour mode to HSB.

Let’s see the result.

- 187 -

Cool!

- 188 -

Try It Yourself

Try using the inner loop and outer loop counters in a new way.

Here’s my own experiment.

It’s a grid of yellow and blue circles, but the blue circles are shifted up and

down a little bit.

That shift is calculated using a sine function to get a wavy effect.

var shift = 5 * sin((x + y) * 3);

If you want to look at the code, it’s online:

● https://codeguppy.com/code.html?tariq/ex03

https://codeguppy.com/code.html?tariq/ex03

- 189 -

- 190 -

Challenge!

Have a look at this picture.

See if you can write code that creates a similar picture.

The pattern is based on a grid. Horizontally it goes from 100 to 700 in steps

of 25. Vertically it goes from 100 to 500 in steps of 25.

At each point on the grid is a coloured line.

The HSB hue of a line is decided using the distance from the centre of the

canvas. This is why lines that are the same distance from the centre have

the same colour.

- 191 -

The other end of a line has coordinates that are random, but chosen within

a range again decided by the distance from the centre.

This is why the lines are longer further away from the centre of the canvas,

and shorter closer to the centre.

If you need to look at my code, it is online:

● https://codeguppy.com/code.html?tariq/ex04

https://codeguppy.com/code.html?tariq/ex04

- 192 -

- 193 -

2.9 - See-Through Colour

- 194 -

What We’ll Do

In this project we’re going to:

● learn about making colours translucent

● see how translucency can help make busy designs work better

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program, just like we did in the first project by clicking on the

Code Now button:

- 195 -

Overlapping Circles

Here is some simple code which draws two overlapping circles.

fill(0, 80, 100);

circle(300, 300, 300);

fill(240, 80, 100);

circle(500, 300, 300);

The color mode is HSB so the colours are red and blue.

Here’s what the code draws.

Now have a look at this code which adds an extra number 0.5 to the fill

instructions.

- 196 -

fill(0, 80, 100, 0.5);

circle(300, 300, 300);

fill(240, 80, 100, 0.5);

circle(500, 300, 300);

Before we talk about what this extra number does, let’s see what the code

draws.

Can you work out what the extra number 0.5 does?

That number seems to make the colours see-through.

Making Colours See-Through

That extra number decides how see-through a colour is.

- 197 -

The number is called an alpha value, and goes from 0 to 1 if we’re using

HSB color mode.

If we use the RGB colour mode, alpha values go from 0 to 255.

This picture shows how a circle becomes less see-through the higher the

alpha value is.

The correct word for this kind of see-through is translucency.

The first four circles in the picture above are translucent.

Some people use the word transparent. If we want to be really correct

transparent means we can’t see any colour at all. So only the first circle in

that picture is transparent.

- 198 -

Translucency Helps Busy Pictures

The following code draws 600 circles at random locations on the canvas.

The circles have a random size chosen between 20 and 50.

The circles also have a hue chosen randomly between 120 and 220.

This hue is used for the fill colour and the outline stroke too, with the

outline being a bit darker.

Let’s see what the code draws.

- 199 -

That’s a very busy picture. It’s almost too busy.

Now let’s make the colours translucent with an alpha value of 0.3.

stroke(hue, 80, 50, 0.3);

fill(hue, 80, 80, 0.3);

Let’s see what difference this makes.

- 200 -

This picture is much easier to look at.

There are still 600 circles, but the detail is easier to explore, and the image

feels less heavy.

We’ve seen how translucency can make very busy designs work better.

- 201 -

Try It Yourself

Try making a busy design which works better with translucency.

Here is my own experiment.

I’ve drawn translucent circles on a grid using a nested loop. The outline

strokes are a bit less translucent.

The hue is calculated so the values alternate between 200 and 300 across

the canvas.

My experiment is online:

● https://codeguppy.com/code.html?tariq/ex05

https://codeguppy.com/code.html?tariq/ex05

- 202 -

- 203 -

Challenge!

See if you can write code to make an image similar to this one.

Although it looks complicated, the image is just made of sine waves plotted

with circles. Those circles have no fill but do have a translucent outline

stroke, with a very low alpha of 0.05.

A nested loop gives us two separate loop counters. One is used as an x

coordinate. The other is used to add a bit to x before it is fed to the sine

function, like this sin(x + t).

If you need to look at the code, it is online:

● https://codeguppy.com/code.html?tariq/ex06

https://codeguppy.com/code.html?tariq/ex06

- 204 -

Level 3 - Advancing

- 205 -

3.1 - Not So Random Noise

- 206 -

What We’ll Do

In this project we’re going to:

● learn about not so random noise

● see how this noise can create quite natural looking patterns

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program, just like we did in the first project.

Your code should look like this:

- 207 -

A Random Horizon

Have a look at this nice view.

The horizon is marked with a dark line. The higher the hills, the higher the

dark line.

It looks like the horizon goes up and down randomly.

Let’s see if we can make our own horizon using random heights.

- 208 -

We can create a function to draw vertical lines along the canvas, each with

a random height.

function horizon(x) {

 var h = randomNumber(200);

 line(x, 400, x, 400 - h);

}

We can use a repeat instruction to count an x coordinate from 100 to 700

in steps of 5.

repeat(100, 700, 5, horizon);

Here’s what the full code and output looks like.

- 209 -

That doesn’t look like a very natural horizon.

Why is this?

Have a think before you continue.

- 210 -

That horizon doesn’t look natural because it changes too much.

If you were walking on a real horizon, the ups and downs wouldn’t be so

sudden and large. The changes would be more gentle.

Let’s say this another way. The height at any point is similar to heights near

it.

But truly random numbers don’t care if they are similar to their neighbours

or not.

We need numbers that are not so random - numbers that change more

gently, and are similar to their neighbours.

Luckily there’s a function that does this, and it’s called noise().

Let’s change our code to use noise(), instead of randomNumber().

h = 200 * noise(x / 100);

The noise() function gives us a number between 0 and 1, so we’ve

multiplied it by 200 to match our previous attempt at a horizon.

Let’s see if this makes a more realistic horizon.

- 211 -

That’s much better!

You can see the heights are similar if they are close together.

From a distance, the horizon still changes randomly, but does it more

gently. And that makes it look more realistic.

This not so random noise is sometimes called Perlin noise, after Ken

Perlin who invented it.

- 212 -

Try It Yourself

That x given to the noise() function was divided by 100. See what happens

if you change that number.

Here is my own experiment. I’ve divided x by 200.

h = 200 * noise(x / 200);

The result is a horizon that changes even more slowly and smoothly.

- 213 -

- 214 -

Noise On A Surface

That noise() function we used took a single parameter x / 100.

h = 200 * noise(x / 100);

That x moves along a horizontal line. The parameter tells noise() where

we are on that line.

What if we wanted to draw noise on a 2-dimensional surface?

We would need to tell the noise() function where we are on that flat

surface. We can use x and y coordinates to do this.

That means providing two parameters to noise().

noise(x / 100, y / 100);

Luckily, the noise() function can take two parameters.

- 215 -

Let’s use a nested loop to move over a grid on the canvas, and use noise

to colour the points we visit.

repeat(100, 700, 1, 100, 500, 1, noisy_colour);

We can feed these loop counters to our noisy_colour function.

function noisy_colour(x,y) {

 var saturation = 80 * noise(x / 50, y / 50);

 stroke(220, saturation, 100);

 point(x, y);

}

You can see that noise() now takes two parameters, x / 50 and y / 50.

This noise is used to calculate a HSB colour saturation for colouring a

point at (x, y).

Here’s the full code and the output.

- 216 -

It looks like fluffy white clouds in the sky. And it’s quite realistic too!

It’s interesting to compare this pattern with what pure randomness would

make.

var saturation = randomNumber(0, 80);

See what you get.

Noise is useful for creating textures, not just clouds but also wood and

stone textures. Noise is even used to create landscapes for planets and

games.

- 217 -

Try It Yourself

We’ve used noise to calculate saturation. Try using it to calculate hue.

Here is my own experiment which scales noise from 0 to 60.

var hue = 60 * noise(x / 50, y / 50);

stroke(hue, 100, 100);

And here is the pattern it makes.

That fire looks very hot!

- 218 -

- 219 -

Noisy Wobble

We can use noise to add some wobble to the location of shapes before we

draw them. We’ll explore what this means next.

Have a look at this repeat instruction.

repeat(100, 700, 5, 100, 500, 1, stripe);

The outer loop counts from 100 to 700 in steps of 5. The inner loop

counts from 100 to 500 in steps of 1. These two counters are passed to a

function stripe.

Let’s start with a very simple stripe function.

function stripe(x, y) {

 circle(x, y, 2);

}

Here’s the full code.

And here’s what that simple code makes.

- 220 -

We see stripes because x increases in steps of 5, and y increases in steps

of 1.

Now let’s wobble those little circles with some noise!

- 221 -

Have a look at this code.

var x2 = x + (100 * noise(y / 50)) - 50;

var y2 = y + (100 * noise(x / 50)) - 50;

circle(x2, y2, 2);

You can see that noise is added to x and the result is put into x2. The

same thing happens for y2, and a small circle is drawn at (x2, y2).

Remember that noise() is always between 0 and 1, so multiplying by 100

gives a value between 0 and 100. Subtracting 50 gives us a new value

between -50 and +50. So x2 can be anywhere between x - 50 and x + 50.

Let’s see the result.

- 222 -

That is a very cool pattern!

Run the code again and you’ll see a different pattern.

It’s hard to believe that simply adding noise creates such an interesting

design.

- 223 -

Look back again at the code which adds noise to x and y:

var x2 = x - 50 + (100 * noise(y / 50));

var y2 = y - 50 + (100 * noise(x / 50));

The noise added to x depends on y not x.

The noise added to y depends on x not y.

Why is this? Spend some time thinking about this to see if you can work it

out.

Here’s the answer.

For each vertical stripe, the value of x stays the same. For example, the

first stripe has x = 100. If x stays the same, then noise(x / 50) also doesn’t

change no matter how far up or down the stripe we are.

That means the same amount of noise is added all the way down the

stripe. So the whole stripe moves left or right and stays straight.

Try it to see what happens.

var x2 = x - 50 + (100 * noise(x / 50));

var y2 = y - 50 + (100 * noise(y / 50));

The value of noise(y / 50) does change down a stripe. This means the

amount of noise added changes down the stripe, and that’s what makes an

interesting pattern.

- 224 -

Try It Yourself

Try your own ideas for adding noise to x and y.

Here is my own experiment using 2-dimensional noise.

var x2 = x - 50 + (100 * noise(y / 50, x / 50));

var y2 = y - 50 + (100 * noise(x / 50, y / 50));

And this is what it makes. I really like it!

The code for my experiment is online:

● https://codeguppy.com/code.html?tariq/ex07

https://codeguppy.com/code.html?tariq/ex07

- 225 -

- 226 -

Challenge!

Have a look at this spooky alien landscape.

The landscape is made from the same noise we’ve been working with.

Can you write code to draw a similar landscape?

- 227 -

The following information might be helpful:

● The landscape is based on a 2-dimensional grid, so you can use a

nested loop.

● The 3-d effect is made by shifting the grid to the right the further

down it goes.

● The height of the landscape is calculated from 2-d noise. In fact it is

the sum of a slow changing noise and a little bit of faster changing

noise.

● The hue is based on the height, and shifted around the HSB colour

wheel to get this range from blue to red.

● The brightness also depends on the height, and gives the valleys a

darker shadow effect.

● Each small circle uses a translucent colour to smooth the image.

If you need to look at my code, it is online:

● https://codeguppy.com/code.html?tariq/ex08

https://codeguppy.com/code.html?tariq/ex08

- 228 -

3.2 - Moving Around A Circle

- 229 -

What We’ll Do

In this project we’re going to:

● learn how trigonometry can help us move around a circle

● see how we can use it to make orbital patterns

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program, just like we did in the first project.

Your code should look like this:

- 230 -

Moving Around a Circle

Have a look at this picture of a point P moving around the edge of this

circle.

How would you describe where the point P is?

An easy way is to use an angle like the one shown next.

A small angle means the point is close to the start.

A larger angle means the point has moved further around the circle.

It’s easy for us to think about an angle to say where P is.

- 231 -

But when we’re coding, we need to use x and y coordinates.

This picture shows both ways of describing where P is:

● P is at an angle A, and at a distance R from the centre.

● P is at horizontal coordinate x, an vertical coordinate y.

How do we convert from our angle to x and y coordinates?

- 232 -

Here’s the answer.

Let’s write those two new things down more clearly.

These are called trigonometric identities. What a scary name!

Let’s look at the first one. It says that to get y, we just multiply R by the

sine of A. We’ve seen the wavy sine function before.

The second one says that to get x, we just multiply R by cos(A).

That cos() is short for cosine. It’s a wavy function just like the sine function

we’ve already seen, but shifted along a little bit.

- 233 -

Here’s a picture of both sine and cosine functions.

You can see that the two waves are exactly the same, except the cosine

wave is shifted left.

You might have converted angles to x and y coordinates in your school

trigonometry classes already.

- 234 -

Enough maths!

Let’s write some code to draw a spot going around a circle.

We can use a repeat instruction to count an angle from 0 to 90 degrees, in

steps of 5.

repeat(0, 90, 5, spot);

Have a look at this code for the spot function.

function spot(angle) {

 var x = 200 * cos(angle);

 var y = 200 * sin(angle);

 circle(400 + x, 300 - y, 10);

}

The code is pretty simple. All it does is take the angle parameter and

calculates x and y from it using those scary-sounding trigonometric

identities.

That 200 is the radius R of the circle we’re moving around.

- 235 -

Here’s the full code and what the code draws:

We can see the dots moving around the circle, from 0 degrees all the way

up to 90 degrees.

Those trigonometric identities really do work!

- 236 -

Try It Yourself

Try changing the repeat instruction so the angle starts and ends at a

different number.

Here’s my experiment which counts the angle from 90 to 270 degrees.

repeat(90, 270, 5, spot);

Here’s the result.

What happens if your angle grows larger than 360 degrees?

- 237 -

- 238 -

Orbital Patterns

Let’s look back at the code which converts the angle to x and y

coordinates.

var x = 200 * cos(angle);

var y = 200 * sin(angle);

Let’s have some fun and do some messing about!

Start by changing the parameters to the sin() and cos() functions,

multiplying them by different numbers.

var x = 200 * cos(angle * 3);

var y = 200 * sin(angle * 4);

Before we run the code, let’s think about what this does.

The x coordinate will change as if the angle was going round at 3 times the

normal speed. The y coordinate will change as if the angle was going

round at 4 times the speed.

Change the loop so it counts up to 0 in steps of 1, not 5. This way we draw

more spots, closer together.

repeat(0, 360, 1, spot);

Let’s see what kind of picture this makes.

- 239 -

Very cool!

Remember when our drawings became busy, we used translucency to

make them work better.

Let’s change those circles so they have a translucent outline and no fill.

noFill();

stroke(0, 100, 90, 0.1);

This outline stroke is a red colour in HSB colour mode.

Let’s also change the loop so the angle is counted up in even smaller steps

of 0.1.

repeat(0, 360, 0.1, spot);

- 240 -

Let’s see the effect.

Very nice!

The code for this drawing is online:

● https://codeguppy.com/code.html?tariq/ex09

https://codeguppy.com/code.html?tariq/ex09

- 241 -

Try It Yourself

Try experimenting with different calculations for calculating x and y from

the angle.

Try using more than one sin() and cos() in your calculations. You could

add or multiply them, or try something else completely.

There’s no right or wrong answer - go wild!

Here is my own experiment.

var x = 200 * cos(angle * 11) * sin(angle * 4);

var y = 200 * cos(angle * 4) * sin(angle * 6);

Here’s the result.

- 242 -

To get this effect I set the circle size to a large 50, but reduced the

translucency to a very small 0.05.

The full code is online:

● https://codeguppy.com/code.html?tariq/ex10

https://codeguppy.com/code.html?tariq/ex10

- 243 -

Challenge!

Have a look at this rather nice pattern.

It uses the same idea of drawing small translucent spots as they move

around a circle with altered vertical and horizontal angular speeds.

This time the spots follow the edge of a small circle, which itself moves

around a larger circle. It’s a bit like the moon going around the Earth.

Can you write code to draw similar patterns?

- 244 -

Here are some suggestions:

● This picture shows a smaller green circle moving around a larger

circle. If the point Q turns around its circle twice as fast as P turns

around the larger circle, the angle of Q is 2A.

● The coordinates of Q from the centre of the green circle can be

calculated easily using the trigonometric identities.

● The coordinates of Q from the centre of the big circle are calculated

by adding the coordinates of Q to P.

● A loop can be used to count the angle A from 0 to 360. A nested loop

can count an extra number which can be used to add some variety to

the sin() and cos() parameters.

The surprisingly simple code for the example pattern is online:

● https://codeguppy.com/code.html?tariq/ex11

https://codeguppy.com/code.html?tariq/ex11

- 245 -

3.3 - Patterns Inside Patterns

- 246 -

What We’ll Do

In this project we’re going to:

● learn about self-similarity and recursion

● see how recursion can easily create intricate patterns

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program, just like we did in the first project.

Your code should look like this:

- 247 -

Patterns Inside Patterns

Have a look at this fern leaf.

If you look closely you’ll see the leaf is made of smaller leaves that look just

like the big one.

This is called self-similarity, and you’ll find lots of examples in nature.

- 248 -

Coding Self-Similar Patterns

Have a look at this self-similar pattern.

The next picture shows how the whole pattern is made of smaller versions

of itself.

Let’s try to create a function that draws this self-similar pattern.

- 249 -

First we’ll start with an empty function.

function my_pattern() {

}

What’s the first thing this function needs to do?

If we look back at our pattern we can see there’s a big circle in the middle

and then two smaller versions of the pattern on the left and right.

Let’s focus on the big circle.

function my_pattern(x, y, size) {

 circle(x, y, size / 2);

}

The my_pattern function now takes the location and size of the circle, and

then draws it.

- 250 -

Let’s try our half-finished function to see what happens.

my_pattern(400, 300, 300);

That asks for the circle to be in the middle of the canvas with size 300.

Here’s what it draws:

It’s not that exciting, but it’s a start.

- 251 -

Let’s continue writing our my_pattern function.

The next step is to draw the smaller versions of the whole pattern.

We could write more circle instructions to draw those smaller circles … but

we can be cleverer than that!

Those smaller patterns are just like the whole my_pattern, just smaller and

moved left and right.

- 252 -

Have a look at this code.

function my_pattern(x, y, size) {

 circle(x, y, size);

 // right half of pattern

 my_pattern(x + size/2, y, size/2);

}

After we’ve drawn the big circle we’re calling my_pattern again but with

new parameters that shift it to the right and make it smaller.

Hang on!

We’re calling my_pattern from inside my_pattern!

Does that work?

● If we call my_pattern, it will call my_pattern again.

● And that my_pattern call my_pattern again.

● And that my_pattern … will call my_pattern … forever?

Actually it won’t go forever because our code will crash with an error.

We need a way to stop it going on forever.

- 253 -

One way to stop my_pattern calling my_pattern endlessly is to stop when

size becomes smaller than a number we choose.

Have a look at this code.

function my_pattern(x, y, size) {

 circle(x, y, size);

 if (size > 50) {

 // right half of pattern

 my_pattern(x + size/2, y, size/2);

 }

}

We’ve used an if instruction to check that size is more than 50. If it is, the

code inside the curly brackets is run. Here that code is the call to

my_pattern shifted right and with a smaller size.

If size is not more than 50, it doesn’t run that code and the function

my_pattern ends normally.

- 254 -

Here’s the code so far:

Let’s run it.

- 255 -

You can see my_pattern has drawn the first big circle, called itself and

drawn a smaller circle to the right, and called itself … until the size became

smaller than 50.

We’ve written a function that draws a self-similar pattern, where the code

itself is self-similar too. That is pretty wild!

This is called recursion - describing something using itself.

It’s a pretty powerful idea.

But it’s also a pretty mind-bending idea too, and can take a while to

understand, so don’t worry if you don’t get it straight away!

- 256 -

Let’s finish our function with the left part of the pattern.

function my_pattern(x, y, size) {

 circle(x, y, size);

 if (size > 50) {

 // right half of pattern

 my_pattern(x + size/2, y, size/2);

 // left half of pattern

 my_pattern(x - size/2, y, size/2);

 }

}

All we’ve done is to say that the pattern has a self-similar smaller version to

the left of the main circle, just like the one to the right.

We also filled the circle with yellow color.

- 257 -

And here’s the result:

We did it!

Take a break! You just did something that many people think is really

difficult!

The code for this program is online:

● https://codeguppy.com/code.html?tariq/ex12

https://codeguppy.com/code.html?tariq/ex12

- 258 -

Try It Yourself

Change the my_pattern function to see what different patterns are drawn.

You might change the size limit, or the parameters to the my_pattern

functions.

Here is my own experiment which adds a smaller my_pattern above and

below the main circle. That’s just two new lines of code.

I also changed the fill and outline colours to be translucent.

The code for my experiment is online:

● https://codeguppy.com/code.html?tariq/ex13

https://codeguppy.com/code.html?tariq/ex13

- 259 -

- 260 -

Writing Recursive Functions

Many people find it takes a while to get used to recursion.

Here is a useful way to think about writing recursive functions.

All recursive functions have three parts:

current

describe the current level of detail

next

describe where the next self-similar detail is

stop

decide when to stop going into more detail

Let’s see how this works for the my_pattern function we wrote before.

● current - a circle at (x, y) with the given size

● next - smaller my_pattern to the left and right

● stop - when size is 50 or less

Let’s practice this way of thinking next.

- 261 -

Try It Yourself

Have a look at this recursive pattern.

See if you can describe this pattern using current, next and stop rules.

Use these rules to write a recursive function to draw this pattern.

My code is online if you need to look at it:

● https://codeguppy.com/code.html?tariq/ex14

https://codeguppy.com/code.html?tariq/ex14

- 262 -

Challenge!

Have a look at this beautiful tree!

This tree is actually a recursive pattern.

Each branch has two smaller trees connected to it.

The challenge is to write code to draw similar recursive trees.

- 263 -

Here are some details about how the tree was drawn.

● The current detail is a branch, a line drawn at an angle.

● The next level of detail is two smaller trees at the end of the current

branch. The angle of these trees is the angle of the branch changed

by a small random amount, one clockwise and one anti-clockwise.

● The recursion stops when the branch length is 5 or less. The first

branch has a length of 100.

● The thickness of the lines is calculated from the length, so a shorter

length means a thinner line.

● The translucency of the lines is calculated from the length too, so a

shorter length means a more see-through colour.

● The HSB brightness of each branch is adjusted by a random

amount at each level of detail.

My own code for this tree is online:

● https://codeguppy.com/code.html?tariq/ex15

https://codeguppy.com/code.html?tariq/ex15

- 264 -

3.4 - More Flexible Loops

- 265 -

What We’ll Do

In this project we’re going to:

● learn about javascript’s own for loops

● see how they’re more flexible than the repeat instruction

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program, just like we did in the first project.

Your code should look like this:

- 266 -

A Simple For Loop

So far we’ve used the repeat instruction to run code many times.

We’re now going to learn about for loops because they can do things that

repeat can’t.

Have a look at this very simple for loop. Can you work out how it works?

for (var x = 100; x < 800; x += 100) {

 circle(x, 300, 25);

}

The curly brackets contain the code to be repeated. That’s the circle

instruction. Easy enough!

The for instruction tells our computer this is the start of a for loop.

What’s all that stuff inside the round brackets?

- 267 -

Let’s break it down:

● var x = 100 creates a new loop counter, a variable called x, with a

value of 100.

● x < 800 is a test to see if the loop should continue. The loop repeats

as long as x is less than 800.

● x += 100 is how the loop counter is increased after every repetition of

the code.

The code should draw circles along the middle of the canvas. The first one

will be at (100, 300), the next one at (200, 300) .. all the way up to (700,

300).

Try it.

- 268 -

You should get a picture like this.

Why is the last circle not at (800, 300)?

The for loop test to continue is x < 800. That means the repeated code is

run as long as x is less than 800. After the code has drawn the circle at

(700, 300), x is increased to 800. That means x is not less than 800, and

the loop stops.

This sometimes trips up even experienced coders!

- 269 -

Some coders prefer to see the last value that their counter will have in the

repeated code. They can do this with a different continuation test.

for (var x = 100; x <= 700; x += 100) {

 circle(x, 300, 25);

}

Here the continuation test is x <= 700, which is true if x is less than or

equal to 700.

Try it!

The overall effect is the same, and you can use the style you prefer in your

own code.

- 270 -

Try It Yourself

Experiment with for loops yourself.

Try different numbers for starting and increasing the loop counter. Try

different tests for continuing the loop. Make sure you also experiment with

using the loop counter inside the repeated code too.

Here’s my own simple experiment.

A loop counter x is started at 50, and increased by 50 after every repetition.

The loop repeats as long as x < 800. A line is drawn from (x, 100) to (800-

x, 500).

Quite a cool effect for such simple code!

- 271 -

- 272 -

Nested For Loops

Do you remember using the repeat instruction to nest an inner loop inside

an outer loop?

We can nest for loops too. It’s quite easy.

Here’s a simple example.

for (var x = 100; x <= 700; x += 100) {

 for (var y = 100; y <= 500; y += 100) {

 circle(x, y, 25);

 }

}

You can see the outer loop in blue. The repeated code is inside its curly

brackets. That’s the inner loop in green.

You’ll remember that nested loops have two loop counters. Here they are x

and y.

Try this code yourself. You should get a regular grid of circles.

- 273 -

Challenge!

We can nest for loops more than two deep. We can’t do that easily with

the repeat instruction.

Have a look at this design.

The challenge is to write code to create a similar pattern.

The main thing to notice is the grid of rings going across and down the

canvas. We usually use a nested loop to do that.

But each ring is made of smaller circles going around it. That means

another loop inside that nested loop.

That’s a loop, inside a loop, inside a loop!

- 274 -

Here are some more details about how the design is made:

● The rings are on a grid spaced 50 pixels apart.

● The small circles are placed every 30 degrees around each ring. We

can use the trigonometric relations we saw earlier to calculate the x

and y coordinates of those small circle centres.

● The hue of each small circle is decided by its angle around the the

ring.

The code for this design is online if you need to look at it:

● https://codeguppy.com/code.html?tariq/ex16

https://codeguppy.com/code.html?tariq/ex16

- 275 -

3.5 - Classes And Objects

- 276 -

What We’ll Do

In this project we’re going to:

● learn about classes and objects

● see how we can use them to simulate moving things

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program, just like we did in the first project.

Your code window should look like this:

- 277 -

Following A Firework

Have a look at this picture of a firework.

Let’s write code to draw the firework’s journey, as it flies up and then falls,

before exploding with a bang!

We’ll need to describe where the firework is. We can use (x, y) coordinates

to do this.

Because the firework is moving, its (x, y) coordinates change as it flies.

How do they change? We’ll look at that next.

- 278 -

This picture shows the firework at (x, y) and then a bit later at (next_x,

next_y).

The picture also shows that next_x is bigger than x by a small amount,

x_speed. That’s the speed in the horizontal direction.

If x_speed was large, next_x would be much further away from x. That

makes sense. A larger speed means it moves further more quickly.

So, to follow the firework’s location, we keep adding x_speed to its x

coordinate, and adding y_speed to its y coordinate.

- 279 -

A Firework Object

Writing code to follow a firework as it flies through the air seems easy

enough.

But what if we wanted 100 fireworks? What if each one had a different

starting point? What if each one was travelling in a different direction?

To stop our code (and our brains) getting messy, it’s useful to have each

firework as a kind of code object that describes everything about it, neatly

all in one place.

It’s easier to see this object idea working, than talk about it.

Have a look at this code.

- 280 -

There’s something new here. That new thing starts with a class instruction

instead of a function instruction.

It has a name, FireWork, and inside the curly brackets there is code.

So far it looks like a normal function.

Looking inside this class we can see what look like two functions. One is

called constructor(), and one is called show().

Here’s the difference between a class and a normal function.

● a function is just packaging up code so it can be used many times by

calling its name

● a class is like a blueprint for creating objects that contain the

variables and functions described in the blueprint

You’ll hear people say method instead of function when they’re talking

about functions of a class.

They might also say data when they mean the variables in a class.

Enough talk, let’s see try this FireWork blueprint.

- 281 -

Create a FireWork class using the code we just saw.

Next, use that FireWork class to create an object like this:

var my_firework = new FireWork();

This creates a new variable, which we’ve called my_firework. Instead of

pointing to a number or colour, my_firework points to a new object

created from the FireWork blueprint.

Try running the code.

Nothing happens. That’s because we’ve created the object but haven’t

used it yet.

If you look at the FireWork class again, you’ll see one of the methods was

called show().

Here’s how we use an object’s method.

my_firework.show();

We simply use the method’s name after the object, with a dot in between.

Before you run the code, see if you can work out what will happen.

- 282 -

Here’s the result.

If we look at the show() method we can see it draws a circle of radius 25.

show() {

 circle(400 + this.x, 300 - this.y, 25);

}

But what are this.x and this.y?

They look like normal x and y variables, but the this means they’re part of

this FireWork object.

They’re created in the constructor() method, which is a special method

called when an object is first created. That’s why it’s called a constructor - it

sets up the object ready to be used.

- 283 -

Let’s look again at that constructor() to see how this.x and this.y are

created.

constructor() {

 this.x = 0;

 this.y = 0;

}

That’s easy enough.

- 284 -

Making The Firework Move

So far we’ve designed a FireWork class which has:

● data about the firework’s x and y location

● a method to draw the firework at (x, y)

Our firework doesn’t know how to move yet. To teach it we need to add to

our FireWork class:

● data about the firework’s speed

● a method to change the firework’s location

We can easily add two variables to the FireWork class for the horizontal

and vertical speed, like this:

constructor() {

 // location

 this.x = 0;

 this.y = 0;

 // speed

 this.x_speed = 20;

 this.y_speed = 0;

}

So when a new object is created from this blueprint, it will have inside it

variables that describe its location and speed.

- 285 -

In our example, the x_speed is 20 and y_speed is 0, which means the

object is moving directly to the right.

Now that we know the speed of the firework, let’s add a method to change

its location.

Let’s call it move().

move() {

 this.x += this.x_speed;

 this.y += this.y_speed;

}

That’s a small amount of code. All it does is update the firework’s x

coordinate by adding x_speed to it. The y coordinate is updated by adding

y_speed to it.

Now that we’ve shown our firework how to move, let’s try it.

In the main section, we already show the firework. We can now call its

move() method, and show() it again.

my_firework.show();

my_firework.move();

 my_firework.show();

Let’s see the result.

- 286 -

The picture shows the firework has moved to the right by 20 pixels because

it has a horizontal speed of 20.

It might not look impressive, but we’ve done a lot of impressive work to get

this far!

- 287 -

Now let’s move our firework for 10 steps.

We can use a for loop to repeatedly move() and show() the firework..

my_firework.show();

for (var step = 0; step < 10; step += 1) {

 my_firework.move();

 my_firework.show();

 }

Here’s the result.

It’s really moving!

- 288 -

Try It Yourself

Change the FireWork class and use your own numbers for the the

horizontal and vertical speeds.

I tried x_speed set to -20 and y_speed set to 20.

Here’s the result:

Try changing the x and y values set in the constructor() method.

What effect does this have?

- 289 -

Gravity Makes Things Fall

Real fireworks don’t travel in straight lines. If they go up, they eventually

slow and fall back down.

That’s gravity!

Let’s talk about how to calculate this.

Speed changes the location, and gravity changes the speed.

We can calculate the next vertical speed y_speed by subtracting a value

from it. Subtracting a bigger value means stronger gravity.

Gravity only pulls things down, not across. That’s why it only affects

y_speed, not x_speed.

- 290 -

Let’s update the move() method to include gravity.

move() {

 this.x += this.x_speed;

 this.y += this.y_speed;

 // gravity

 this.y_speed -= 5;

}

That’s a very simple change to the code!

We’re trying a gravity strength of 5 to see how it works.

Change the starting x, y and y_speed back to 0, and x_speed back to 20.

Now run the code again to see the effect of gravity.

- 291 -

That’s much more realistic.

You’ve just made something fall under gravity. That’s pretty impressive!

The code for this program is online at:

● https://codeguppy.com/code.html?tariq/ex17

https://codeguppy.com/code.html?tariq/ex17

- 292 -

Lots of Fireworks

Let’s have not one, not two, .. but 100 fireworks!

Coding our firework as a class helps us. We can easily create 100 firework

objects using a loop.

First we create an empty list.

var list_of_fireworks = [];

Then we use a for loop to add 100 new FireWork objects to the list.

for (var count = 0; count < 100; count += 1) {

 list_of_fireworks.push(new FireWork());

}

You’ll recognise the new Firework() instruction to create a fresh new

object from the blueprint.

This new object is added to the list_of_fireworks using push().

After the loop finishes, that list will have 100 new FireWork objects.

- 293 -

Now we have 100 fireworks in a list, we need to move() and show() each

one.

Have a look at this new kind of for loop.

for (var firework_object of list_of_fireworks) {

 firework_object.move();

 firework_object.show();

}

This for loop works through each item in the list_of_fireworks, and calls it

firework_object as it runs the code inside the curly brackets.

This will only move() and show() each firework once. We need another

loop around this one if we want to move each firework 10 steps.

for (step = 0; step < 10; step += 1) {

 for (var firework_object of list_of_fireworks) {

 firework_object.move();

 firework_object.show();

 }

}

Let’s run this code to see if it works.

- 294 -

Here’s what the code draws.

Where are the 100 fireworks?

There are 100 fireworks, but they’re all starting at exactly the same

location, with exactly the same speed. That means they all follow exactly

same journey.

- 295 -

Let’s change our FireWork class so the starting position and speeds are

random, but close to the centre of the canvas.

constructor() {

 // location

 this.x = randomNumber(-10, 10);

 this.y = randomNumber(-10, 10);

 // speed

 this.x_speed = randomNumber(-10, 10);

 this.y_speed = randomNumber(0, 20);

}

The horizontal x_speed is a random number between -10 and +10. A

negative speed means moving left.

The vertical y_speed is a random number between 0 and 20. That means

the firework will start moving upwards, not downwards.

Let’s also change the circle size to a smaller 2 in the show() method and

filled the circles with yellow.

Let’s see the results so far.

- 296 -

That’s starting to look more like a firework display.

We can tweak a few things to make the image look nicer:

● Increase the number of journey steps from 10 to 400.

● Change the circles to size 1, with no stroke and a HSB colour (220,

100, 80, 0.3). The translucency will help with this busy drawing.

● Make the journey steps smaller by making the speeds and gravity

smaller. Divide the x_speed and y_speed by 10 so they are

randomNumber(-10, 10) / 10 and randomNumber(0, 20) / 10.

Change the gravity from 5 to 0.01.

Let’s see the result.

- 297 -

Pretty cool.

Now we need to add explosions!

We can add an explode() method to the FireWork class like this.

explode() {

 circle(400 + this.x, 300 - this.y, 10);

}

The explosion is just a larger circle.

- 298 -

We only explode the fireworks at the end of their journey. That means we

call the explode() method after the loops which follow the firework for 400

steps.

for (var firework_object of list_of_fireworks) {

 firework_object.explode();

}

The code we’ve written so far is at:

● https://codeguppy.com/code.html?tariq/ex18

Let’s see the results.

Pretty!

https://codeguppy.com/code.html?tariq/ex18

- 299 -

- 300 -

Try It Yourself

Change the FireWorks class so the colour of the fireworks isn’t blue.

Here’s my own experiment.

I’ve changed the background to a darker grey, and the firework hue is

picked at random from the range 0 and 30 in the constructor.

I’ve also changed explode() to draw two circles. A bigger circle has the

same hue as the firework, and a smaller circle inside it has double the hue.

The code for my experiment is online:

● https://codeguppy.com/code.html?tariq/ex19

https://codeguppy.com/code.html?tariq/ex19

- 301 -

Sky Full Of FireWorks

Remember how we passed information to a function using the round

brackets after its name?

We can do the same when creating an object. Have a look at this code.

new FireWork(100, 100);

Here we’re creating a new FireWork object and passing two numbers to it.

They get passed to the constructor() method.

We can use this to pass information about where we want the firework to

start its journey.

Have a look at this code:

constructor(x, y) {

 // location

 this.x = x + randomNumber(-10, 10);

 this.y = y + randomNumber(-10, 10);

This constructor() now expects two bits of information, and calls them x

and y. They are used to calculate the this.x and this.y starting locations.

So new FireWork(100, 100) would create a FireWork object starting at a

random point very close to (100, 100).

- 302 -

We can use a loop to create clusters of fireworks, with each cluster being

centred at a random point on the canvas.

// firework clusters

for (var cluster = 0; cluster < 5; cluster += 1) {

 var x = randomNumber(-300, 300);

 var y = randomNumber(-100, 200);

 // create many fireworks at that x, y cluster

 for (var count = 0; count < 50; count += 1) {

 list_of_fireworks.push(new FireWork(x,y));

 }

}

You can see that for each of the 5 clusters, a random x and y is chosen.

These are used to create 50 new FireWork objects in that cluster.

The next cluster will have a new x and y chosen at random, so the 50

fireworks in that cluster will be centred around this new location.

Let’s see the effect of having 5 clusters of 50 fireworks.

- 303 -

That is pretty impressive!

Run the code again to see different results.

The code for this program is online:

● https://codeguppy.com/code.html?tariq/ex20

https://codeguppy.com/code.html?tariq/ex20

- 304 -

Challenge!

Have a look at this interesting pattern.

The paths are journeys made by objects that move in small steps in

directions that change by small random amounts.

We can think of these objects as little crawling ants.

The challenge is to write code to create similar ant paths.

- 305 -

The following details explain how the pattern was drawn.

● There are 400 ants, which are followed for 600 steps.

● The ant class constructor sets

○ an x and y location at random near the middle of the canvas

○ a random initial direction using an angle

○ a step size chosen at random between 0.2 and 1.0

○ an initial alpha value of 0.001

● For each step, each ant

○ moves by step size in the direction it is pointing in

○ changes its direction by adding a random angle from the range

-30 to +30 degrees

○ its alpha value is increased by 0.001

● An ant’s path is shown using a small circle of size 1, and with a

translucency set by its alpha value.

● At the end of the path, a small red translucent circle of size 5 is

drawn.

If you need to look at my code it is online:

● https://codeguppy.com/code.html?tariq/ex21

https://codeguppy.com/code.html?tariq/ex21

- 306 -

3.6 - Code That Creates Code

- 307 -

What We’ll Do

In this project we’re going to:

● create our own turtle language, and write an interpreter for it.

● evolve turtle code as an l-system to draw interesting patterns.

Start a New Program

Log in to codeguppy.com if you haven’t already.

Create a new program, just like we did in the first project.

Your code window should look like this:

- 308 -

Turtle Code

Here’s a turtle with a pen. She’s very artistic and loves to draw.

Our friendly turtle can follow simple instructions.

Here’s our turtle following the instruction F, which means go forward.

Her pen draws a line as she moves forward.

- 309 -

Our turtle can also understand R which means turn right.

The instructions FRF mean go forward, turn right, then go forward again.

You can see this draws a shape that looks like a corner.

Can you work out what the instructions FRFRFRF will draw?

Our turtle also understands L which means turn left.

We can call these instructions turtle code. What a cool name!

- 310 -

Let’s Code A Turtle

Let’s make a turtle that can run turtle code.

It makes sense to use a class because our turtle will have:

● data - keeping track of where it is on the canvas

● methods - to move forward, and turn left and right

Have a look at this first go at designing a Turtle class.

class Turtle {

 constructor() {

 // location

 this.x = 0;

 this.y = 0;

 // direction

 this.angle = 0;

 }

}

The this.x and this.y variables keep track of the turtle’s location.

We also need to know which way the turtle is facing. We can use an angle

this.angle to keep track of its direction.

If we created an object from this class, it wouldn’t be able to do much

because we haven’t written any methods yet.

Let’s write a method to turn our turtle left.

- 311 -

When our turtle turns left, it doesn’t change location. That means the this.x

and this.y coordinates don’t change.

The only thing that changes is the turtle’s direction.

Turning left means turning 90 degrees anticlockwise.

// turn left

left() {

 this.angle += 90;

}

That wasn’t too hard!

When our turtle turns right, it turns 90 degrees clockwise. That means

subtracting 90 degrees.

// turn right

right() {

 this.angle -= 90;

}

- 312 -

Let’s think about writing a method to move our turtle forward.

Moving forward depends on the direction the turtle is facing. That means

we need to use turtle object’s angle.

We can use the trigonometry we saw earlier to calculate the new x and y

coordinates. The next picture reminds us how to do this.

We need to know the step size to work out the new location, so let’s add

that to our constructor. We can choose a step size of 50 for now.

constructor() {

 // location

 this.x = 0;

 this.y = 0;

 // direction

 this.angle = 0;

 // step size

 this.step = 50;

 }

- 313 -

Have a look at this code for a forward() method.

forward() {

 // new location

 var new_x = this.x - this.step * sin(this.angle);

 var new_y = this.y + this.step * cos(this.angle);

 // draw line

 line(400 + this.x, 300 - this.y, 400 + new_x, 300 -

new_y);

 // update turtle’s location

 this.x = new_x;

 this.y = new_y;

}

First we calculate the new location using the trigonometric relations we

learned about before.

We then draw a line from the current location to the new location.

Because the turtle has now moved, we need to update its location with the

new position. You can see this.x and this.y being updated.

We’ve done a lot of work making our Turtle class. Let’s use it!

- 314 -

We can create a new turtle object and test its methods like this:.

var my_turtle = new Turtle();

my_turtle.forward();

my_turtle.right();

my_turtle.forward();

Run the code to check our turtle does go forward, right and forward.

Yes! Our turtle really does work.

The code so far is at:

● https://codeguppy.com/code.html?tariq/ex22

https://codeguppy.com/code.html?tariq/ex22

- 315 -

Try It Yourself

Use the turtle’s forward(), left() and right() methods to draw a different

pattern.

Here is my own experiment.

- 316 -

Interpreting Turtle Code

Let’s see if we can get our turtle to interpret and carry out the turtle code

we designed earlier.

Our turtle code is just a list of instructions, like FRFRFRF, carried out one

after another.

It makes sense to keep these instructions in a list, and use a loop to work

through them in order.

var turtle_code = ['F', 'R', 'F', 'R', 'F', 'R', 'F'];

You can see we’ve created a new variable called turtle_code. The square

brackets tell our computer the variable points to a list. Inside the list are 7

turtle code instructions.

Here’s a easier way of writing the same thing.

var turtle_code = [...'FRFRFRF'];

Those three dots simply split the text string ‘FRFRFRF’ into a list of letters.

So far so good.

- 317 -

Now we need to work through those instructions and carry them out.

We’ve written loops to work through a list many times before.

for (var instruction of turtle_code) {

 // do something with the instruction

}

This for loop works through the list of turtle code and temporarily names

each one instruction.

What do we do now?

Let’s think about it in plain English. If the instruction is F then our turtle

moves forward. If the instruction is R it turns right. And if it is L then it turns

left.

Those looks like if() tests which are easy to code.

When you have a hard coding problem, something thinking about it in plain

English can help solve it.

for (var instruction of turtle_code) {

 // forward

 if (instruction == 'F') {

 my_turtle.forward();

 }

}

You can see the code checking to see if the instruction is F, and if it is,

calling our turtle’s forward() method.

That wasn’t so hard.

- 318 -

We can easily write if() tests for the R and L instructions too.

// go through each instruction

for (var instruction of turtle_code) {

 // forward

 if (instruction == 'F') {

 my_turtle.forward();

 }

 // right

 if (instruction == 'R') {

 my_turtle.right();

 }

 // left

 if (instruction == 'L') {

 my_turtle.left();

 }

}

That looks like a lot of code, but the idea is simple.

Let’s run our program.

It should now work through the turtle code FRFRFRF to draw a square.

- 319 -

That worked!

Even though that square isn’t very impressive, what we’ve done is

impressive.

We’ve taught our turtle to read, understand and carry out turtle code

instructions!

Computer scientists call what we’ve created an interpreter.

The code we’re created so far is online:

● https://codeguppy.com/code.html?tariq/ex23

https://codeguppy.com/code.html?tariq/ex23

- 320 -

- 321 -

Try It Yourself

Try experimenting with your own turtle code.

Here’s my own experiment.

The turtle code for this pattern is FLFRFRFLFRFRFLFRFRFLFRF.

- 322 -

Remembering Where We Were

Let’s give our turtle more powers.

It would be good if our turtle could remember a point, carry on drawing, and

then come back to that point later, and carry on from there.

We can invent two new turtle code instructions for doing this:

● an opening square bracket [for marking the point you want to come

back to

● a closing square bracket] for going back to the last remembered

point

This next picture shows our turtle using these two new instructions.

- 323 -

See if you can follow the code:

● The turtle first moves forward, F.

● The next instructions is [so the turtle makes a note of this location.

You can see this point marked with a pink turtle.

● It then carries on by turning right and going forward, RF.

● The next instruction] tells our turtle to go back to the saved point.

● After that the turtle turns left and goes forward, LF.

How do we code this new ability?

When our turtle meets a [instruction it will need to make a note of where it

is. That means saving the its location and angle.

We can add a method for saving the turtle’s state like this:

savestate() {

 this.state.push(this.x);

 this.state.push(this.y);

 this.state.push(this.angle);

}

We’re pushing this.x, this.y and this.angle onto the end of a list this.state

which we need to first create in the constructor.

Why save to a list? Why don’t we just save the state using normal

variables?

- 324 -

The reason is that we might see more than one [instruction so we need to

save more than one point before we return to them.

When we return to a previously saved state, we need to pick off this

information in reverse order.

returnstate() {

 this.angle = this.state.pop();

 this.y = this.state.pop();

 this.x = this.state.pop();

}

The last thing we put on the list was this.angle, which is why it is the first

thing to be taken off.

Add these methods to your Turtle class, and also add the code to call

these methods when the [and] are found.

Test your turtle’s new powers with the turtle code F[RF]LF.

You should get that T-shape we saw earlier.

- 325 -

That T-shape means our turtle correctly interprets the [and] instructions.

The code so far is online at:

● https://codeguppy.com/code.html?tariq/ex24

https://codeguppy.com/code.html?tariq/ex24

- 326 -

Try It Yourself

Have a go at writing turtle code with several [and] instructions.

You can save state several times, but you must return it later. That means

every [must have a matching] later in the code.

Here is my experiment using [LF[LF][RF]][RF[LF][RF]].

- 327 -

Code That Grows!

Let’s do something really cool.

Imagine our code instructions can grow and change, as if they were plant

cells.

This picture shows what happens to turtle code FRF if the growth rule is

that every F turns into RFLF.

It will be interesting to see what patterns this next generation of turtle code

draws.

We can easily write code to apply this rule to grow the starting turtle code

into the next generation of turtle code.

- 328 -

Have a look at this code:

// grow next generation of turtle code

var next_turtle_code = [];

for (var instruction of turtle_code) {

 // growth rule for F

 if (instruction == 'F') {

 next_turtle_code.push(...'RFLF');

 } else {

 // pass through unmatched instructions

 next_turtle_code.push(instruction);

 }

}

turtle_code = next_turtle_code;

We start with an empty list next_turtle_code. We then use a for loop to

work through each instruction in the turtle_code.

We copy each instruction to next_turtle_code except if it is an F, in which

case we push RFLF.

After all the instructions have been looked at, turtle_code is pointed at the

new code.

- 329 -

If we start with FRF, let’s see what the next generation of code does.

Let’s change our code to apply the growth rule again to grow the second

generation from the first generation.

In fact, we can easily use another loop around the code we just wrote to

grow many generations.

This loop grows the code for four generations.

for (var gen = 1; gen <= 4; gen += 1) {

 // ...

}

- 330 -

If you looked at the turtle code after four generations is would be

RRRRFLFLRFLFLRRFLFLRFLFLRRRFLFLRFLFLRRFLFLRFLFRRRRR

FLFLRFLFLRRFLFLRFLFLRRRFLFLRFLFLRRFLFLRFLF.

The 3 instructions FRF grow into 93 instructions!

Let’s see what pattern those 93 instructions draw.

Very interesting!

Our turtle code has grown, and the patterns have become more interesting.

Let’s keep going.

- 331 -

If we grow the code for 16 generations, the turtle code grows to 39,3213

instructions. That’s huge!

Here’s what it draws.

That is pretty amazing!

Even reducing the turtle’s step size to 5 the pattern is still much bigger than

the canvas.

The code we’ve written so far is online at:

● https://codeguppy.com/code.html?tariq/ex25

https://codeguppy.com/code.html?tariq/ex25

- 332 -

Try It Yourself

Use your own starting turtle code to see what patterns are drawn when it

grows for 4 generations.

Try growing your code for more generations. Do this slowly because your

code will grow very big very quickly and this can slow or crash your

program.

If your pattern grows outside the canvas, reduce the turtle’s step size.

One more thing to try is to change the amount of turn that an L or R

instruction causes.

Here’s my own experiment.

- 333 -

That triangular pattern was made with starting turtle code FLLFLLF and a

growth rule of F > F[LF]F.

The turning angle is 60 degrees, instead of 90 degrees.

The step size is 7 and the starting location and angle were adjusted to

make the triangle fit better on the canvas.

The code for this pattern is online:

● https://codeguppy.com/code.html?tariq/ex26

https://codeguppy.com/code.html?tariq/ex26

- 334 -

Because this is so fun, here’s another example.

The starting code is F[LF]F[RF] and the growth rule is F > F[RF]F[LF].

The turning angle is 30 degrees, instead of 90 degrees.

I’ve used a translucent line so that more detail is visible.

The code is online:

● https://codeguppy.com/code.html?tariq/ex27

https://codeguppy.com/code.html?tariq/ex27

- 335 -

Challenge!

Have a look at this pattern.

The challenge is to give your turtle the ability to understand a new turtle

code instruction C which changes the hue that the turtle is keeping track of,

and draws a small circle.

The code for this pattern if you need to look at it is online:

● https://codeguppy.com/code.html?tariq/ex28

https://codeguppy.com/code.html?tariq/ex28

- 336 -

Saving & Sharing Your

Work

- 337 -

Saving Your Work

You can save your work so you can see it again another time.

To save your work, click the Save button at the top right.

You can save your work even if you haven’t finished your code.

This means you can take breaks from working on your code.

It’s also a good idea to save your work regularly so you don’t lose your

work if there’s a problem with your computer.

- 338 -

It is also a good idea to give a meaningful name to your program by editing

the name presented in the top left corner.

When you’re done with the program, press the “Home” button on the left

toolbar to return to the main account screen.

- 339 -

All saved programs will appear under “MY PROGRAMS” tab on your

account.

The programs will have the name you gave them while in the coding editor.

If you didn’t rename your programs they will appear as “Untitled”. Don’t

worry, you can open them at any time and rename them.

- 340 -

Sharing Your Work

Once you’ve saved your work it is given its own web address.

You can see the web address at the top in the browser’s address bar. It

should have a weird looking string at the end.

You can share this link in any way you want. You can email it to your

friends or family. You can share it with the whole world on social media!

For more share control you can use the Share button from top right corner.

After someone clicks the link they’ll see the drawing your code makes.

They can also see your code if they want to see how it works.

Anyone on the internet with a tablet, laptop or computer can see your work.

